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Abstract

27 years after Black (1990, JF), the universal hedging formula (that is, in equilibrium, every investor

would have the same hedging ratio towards any foreign currency regardless of the investor’s home cur-

rency) remains the prevalent opinion on currency hedging both in the industry and in academia, despite

the sophistication of the equity and foreign exchange market. In this paper, we propose a mutually

exciting jump-diffusion model that explicitly accounts for equity-currency contagion. We characterize

the “safe haven” currencies by a small equity-currency excitor, indicating that a price plunge in the

equity market is not likely to trigger a depreciation of that currency. The “investment” currency, on

the other hand, is characterized by a large equity-currency excitor, indicating that a price plunge in the

equity market is very much likely to trigger a substantial depreciation of that currency. We first solve

the portfolio optimization problem involving equity assets and risky currencies in closed form in a partial

equilibrium framework, taking equity and exchange rate dynamics as given. Second, we impose security

market clearing conditions and derive the equilibrium currency hedging strategies. We find that all else

equal, investors hedge less safe haven currency risk than investment currency risk, a result that challenges

the classic Black (1990) universal hedging formula.

Keywords: Portfolio choice; Currency contagion; Currency hedging; Market clear; Safe haven currency;

Investment currency; Mutually exciting jumps.
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1 Introduction

The last two decades witnessed several episodes of financial and currency crises, most notably the 1994

Mexico peso crisis, the 1997 Asian crisis, the 1998 Russian crisis, the more recent 2008 global financial

crisis and the subsequent 2009 European debt crisis. A common feature in these currency crises is

that, among other things, the currency devaluation in a crisis is usually accompanied by dramatic capital

market drops. During the Asian crisis, for instance, initiated by sharp currency devaluations in Southeast

Asia, the Dow Jones Industrial Average plummets 554 points for its biggest point loss by then. Shortly

after, the Korean won hits a record low in December, followed by Indonesian rupiah’s free fall in January

1998 and the collapse of Russia’s financial system in mid 1998.

The equity-currency contagion is a well documented phenomenon in the literature. For example,

Caramazza, Ricci, and Salgado (2004) conclude that financial linkages are significant causes of currency

crises after controlling for the role of domestic and external fundamentals, trade spillovers, and financial

weaknesses in the affected countries. A strong financial linkage to the crisis country of origin not only

raises the probability of contagion substantially, but also helps explain the observed regional concentration

of currency crises. Pesenti and Tille (2000) study the Asian currency crisis and find that while weak or

unsustainable economic policies provide a partial explanation of the currency crisis, they cannot account

for the severity of the crises. One also need to take into account the volatile capital markets.1 Fratzscher

(2003) finds that the Latin American crisis in 1994-95 and the Asian crisis of 1997 spread across emerging

markets are not primarily due to the weakness of those countries’ fundamentals but rather to a high degree

of financial interdependence among affected economies. Brunnermeier, Nagel, and Pedersen (2008) link

the crash risk of carry trade strategies to funding constraints of speculators, with funding constraints

measured by the implied volatility of the S&P 500 stock index. Ferreira Filipe and Suominen (2014)

investigate how the financial market conditions in a major carry trade funding country, Japan, affect the

global currency markets and currency trading and find that funding risks in Japan (measured by the

stock options implied volatility and crash risk in the stock market in Japan) affect the global currency

market. Consistent with these findings, De Bock and de Carvalho Filho (2015) find that during the

risk-off episodes, currency markets exhibit recurrent patterns, as the Japanese yen, Swiss franc, and

U.S. dollar appreciate against other G-10 and emerging market currencies. Lettau, Maggiori, and Weber

(2014) study the cross section of currency returns using the downside risk capital asset pricing model.

They find that high yield currencies earn higher excess returns than low-yield currencies because their

co-movement with aggregate market returns is stronger conditional on bad market returns than it is

1This view is also shared by practitioners. For example, Bluford Putnam, the managing director and chief economist
from CME Group claims that the emerging market currency contagion in 2013-2014 was driven by asset allocation shifts
from emerging markets to US equities and other mature industrial markets.
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conditional on good market returns. Francis, Hasan, and Hunter (2006) and Chernov, Graveline, and

Zviadadze (2012) find that spillover from equity to currency market exists not only in mean but also in

volatility.

The interdependence between equities and currencies leads to the concept of “safe haven” currencies

and “investment currencies”. Ranaldo and Söderlind (2010) define an asset to be “safe haven” if it offers

hedging benefits on average or in times of stress. They find that safe haven currencies tend to have low

yield but immune to market downturns. “Investment currencies”, on the other hand, are like the mirror

image of safe haven currencies – high yield and high exposure to systemic risks. When the global market

is in stress, investors tend to move into “safe haven” currencies (Cenedese 2012). They identify safe

haven currencies by regressing currency returns on current or lagged risk factors such as stock returns

and bond returns. They conclude that the Swiss franc, the Japanese yen, and the British pound display

safe currency characteristics. Nevertheless, covariance between currency returns and equity returns can

be time varying, and can even change signs over time. Cenedese (2012) finds that during periods of bear,

volatile world equity markets, currencies provide different hedging benefits than in bull markets. The 2008

financial crisis emerged as an important case study where safe haven effects went against typical patterns

partially in contrast with the results of Ranaldo and Söderlind (2010). During the crisis, a large number

of currencies that were not at the centre of the turmoil depreciated, even those which were regarded as

safe haven currencies preceding the crisis (Kohler 2010). Habib and Stracca (2012) study what makes a

safe haven currency in a systematic way and find that only a few factors are robust associated to a safe

haven status.

The interplay between the equity market and the currency market poses challenges on optimal currency

hedging. So far, there is no consensus on how much currency risks to hedge and even whether to hedge

currency risks at all. Empirical work has been carried out to answer this question. On one hand, many

studies have found that hedging currency risks reduces portfolio risks. For example, Glen and Jorion

(1993) investigate the benefits from currency hedging with forward contracts and find that currency

hedging significantly improves the performance of portfolios. Campbell et al. (2010) consider an investor

with an exogenous portfolio of equities or bonds and ask how the investor can use foreign currencies

to manage the risk of the portfolio. They find that the correlations between exchange rates and equity

returns vary a lot across different currency pairs. On the other hand, papers like De Roon, Eiling, Gerard,

and Hillion (2012) find that currency hedging reduces the volatility of portfolio returns at a cost of lower

expected return distribution and fatter tails of international equity returns. On the extreme, Froot (1993)

claims that currency exposure should be left unhedged for long term investors based on the assumption

that purchasing power parity holds in the long run and exchange rates display mean reversion.

The complication of the equity and currency returns calls for models that account for the dependence
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structure of the equity market and the currency market. Indeed, as pointed out in Backus, Foresi,

and Telmer (2001), the gross return of a foreign currency is exactly the ratio of the foreign stochastic

discount factor return over the domestic one. As long as risk factors are compensated differently in the

two economies, priced risk factors that drive the equity returns should in principle drive exchange rates.

Therefore the equity market and the foreign exchange rate are interconnected in theory. Modeling equity

and exchange rate jointly is not only empirically interesting but also of theoretical relevance.

Modeling equity and exchange rate dynamics is developed into separate strands of literature. On the

equity side, to name a few, Pan (2002) estimates the S&P 500 index to a model in which both volatility

and price may jump; Aı̈t-Sahalia, Cacho-Diaz, and Laeven (2015) introduce the mutually exciting jump

diffusion processes to model equity prices; Boswijk, Laeven, and Lalu (2015) add, on top of Aı̈t-Sahalia

et al. (2015), stochastic volatility and estimate the model using option prices.

On the currency side, an active research area in the exchange rate literature is to explain the forward

premium puzzle and the carry trade returns. Examples are the factor models proposed by Backus, Foresi,

and Telmer (2001), later extended by Lustig, Roussanov, and Verdelhan (2011) to account for the cross

section of carry trade returns. Bates (1996) is one of the pioneers that include jumps in stochastic

volatility models to capture exchange rate dynamics. Since then, FX models with jumps to capture crash

risk in currency returns can be found in Chernov, Graveline, and Zviadadze (2012), Farhi and Gabaix

(2008), Farhi, Fraiberger, Gabaix, Ranciere, and Verdelhan (2009), Carr and Wu (2007), Jurek (2014).

Jumps in exchange rates have also been documented and studied using high frequency data by Lahaye,

Laurent, and Neely (2011), Chatrath, Miao, Ramchander, and Villupuram (2014) and Lee and Wang

(2014), etc.

Theoretical studies that account for the interdependence between the capital market and the exchange

rate market are relatively scarce. One example is Bakshi, Carr, and Wu (2008), who decompose the

stochastic discount factor (hence exchange rates) into interest rate risk, equity risk and an orthogonal

component. A similar factor structure model can be found in Brusa, Ramadorai, and Verdelhan (2016),

who include an equity factor, a carry factor and a Dollar factor in modeling exchange rate dynamics.

Another attempt is Lettau, Maggiori, and Weber (2014), who propose to explain the currency return in

a downside risk capital asset pricing model by including a downside equity beta.

The interdependent structure between equity and currency has important implications on international

portfolio choice and optimal currency hedging strategies. The study on the theoretical multi-currency

hedging in an equilibrium framework starts with Solnik (1974), which is expanded by Sercu (1980),

Stulz (1981), Adler and Dumas (1983), etc. While the literature on modeling equity and exchange rate

dynamics has grown fast in the past decade, relatively little is known on the international portfolio choice
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with currency risks in more realistic scenarios.2 One of the first attempts on the equilibrium currency

hedging is made by Black (1990). Using the geometric Brownian motion model for equity and currency

returns, the paper derives a striking result: in equilibrium, every investor hedges the same amount of any

risky currency regardless of the investor’s home currency. This universal currency hedging ratio depends

only on the average risk tolerance and on total wealth and total assets held by investors in each country.

Surprisingly, Black’s universal hedging ratio remains the prevalent opinion on currency hedging both in

the industry and in academia even 27 years after the paper was published. Among existing literature

that studies international portfolio choice problem with currency risks, (conditional) covariance between

exchange rates and equity (bond) risks is used exclusively as the measure of interdependence between

currencies and other asset classes, despite how sophisticated and interdependent the equity market and

the foreign exchange market have become.

We contribute to the equity-currency literature by bridging this gap. We revisit the Black’s equilibrium

currency hedging problem under the context of equity-currency contagion. We propose a realistic model

that generates the equity-currency contagion, which enables a theoretical characterization of the “safe

haven” properties of a risky currency. We derive the equilibrium currency hedging strategies under this

context.

To focus on the impact of equity-currency contagion, we strike a balance between model parsimony

and consistency with the extant literature. In particular, we propose a mutually exciting jump diffusion

model to describe equity and exchange rate processes jointly. In this model, an equity price jump today

increases the probability of experiencing further price jumps in the equity market in the future as well

as the probability of experiencing price jumps in the exchange rate market, and similar for the exchange

rate jumps. The model therefore produces a rich dependence structure between the equities and foreign

exchange rates – the normal dependence is captured by instantaneous covariance and the dependence

during market turmoil is generated by jump excitation. Jump excitation in this case is a better candidate

than time-varying covariance for two reasons. First, although there appears to be excess dependence

between the equity market and the exchange rates, the comovement is neither exactly simultaneous nor

certain. By mutually exciting jumps, a crash in the equity market only increase the probability of future

currency jumps. Second, investment currencies, which are more prone to capital market turmoil, not

necessarily have an equally strong impact on equities as equities on them, especially during recessions.

Dependence generated by covariance is symmetric in nature, in the sense that if a currency were of the

2Some exceptions include Brown, Dark, and Zhang (2012), who study the optimal currency hedging problem in the
context of stochastic volatility, and Torres (2012), who explore the optimal portfolio choice problem in a Poissonian jump
diffusion model. Empirical papers include Glen and Jorion (1993) who investigate the benefits from currency hedging with
forward contracts and find that currency hedging significantly improves the performance of portfolios. Campbell et al.
(2010) consider an investor with an exogenous portfolio of equities or bonds and ask how the investor can use foreign
currency to manage the risk of the portfolio. By looking at higher moments of hedged portfolio returns, De Roon, Eiling,
Gerard, and Hillion (2012) find that while hedging lowers the volatility of international equity and bond portfolios, it results
in unfavorable Sharpe ratios, skewness and kurtosis.
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“investment” type measured by covariance, then its movement should also stir the equity market equally

well. By capturing tail dependence using jump excitation, we allow for asymmetric excitation structure,

in which case a currency that barely influences the equity market may acutely respond to equity market

downturns.

While deviating from the log normal stochastic discount factors in the carry trade literature, the model

complies with the foreign exchange literature findings that both global and country-specific risk factors

are essential ingredients to generate the observed carry trade return patterns. In particular, our model

is consistent with Brusa, Ramadorai, and Verdelhan (2016), in which three types factors are driving the

stochastic discount factors: an equity factor that only drives the equity, a currency factor which only

appears in the currency returns, and an equity-currency factor, which drives both the equity market and

the foreign exchange rate. Our model can be regarded as an extension and variation of Farhi, Fraiberger,

Gabaix, Ranciere, and Verdelhan (2009), where we allow the equity market and the exchange rate to be

mutually exciting, while maintaining the factor structure that prevails the exchange rate literature.

We first solve the portfolio optimization problem with country-specific stocks and currencies in closed

form in a partial equilibrium framework, taking equity and exchange rate dynamics as given. We show

that the optimal net weight on a risky currency can be decomposed into four components: (1) the

risk premium demand that earns the expected excess currency return by taking currency risks, (2) the

risk management demand that exploits the diversification benefits through the instantaneous covariance

matrix with other assets in the portfolio, (3) the myopic buy-and-hold demand which is induced by the

discontinuities (jumps) in the currency returns, and (4) the intertemporal hedging demand that hedges the

state variable uncertainty – the stochastic jump intensities in our case. The myopic buy-and-hold demand

and the intertemporal hedging demand distinguish our prediction of the optimal currency holdings from,

say, that of Solnik (1974) and Black (1990). The intertemporal hedging demand, in particular, is a result

of the mutually exciting nature of the jump components.

To see the implication on the equilibrium currency hedging strategies under the equity-currency

contagion context, we impose security market clearing conditions. Our equilibrium currency hedging

differs from that of Black (1990) in the following aspects. Investors with different home currencies will in

general have different hedging ratios towards a risky currency. More importantly, all else equal, investors

have a larger hedging ratio for investment currencies, those that are prone to equity market turmoil than

that for the safe haven currencies, those that are immune to equity market downturns. The preference

for the safe haven currencies cannot be readily replicated by symmetric dependence measures, such as

correlation.

This paper is organized as follows: Section 2 proposes the equity and exchange rate dynamics. We

show that our model is able to generate equity-currency contagion while at the same time comply with the
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extant literature. Section 3 solves the optimal asset allocation problem in a partial equilibrium framework.

Section 4 studies the property of the optimal net currency weights. Section 5 imposes the security market

clearing conditions and derives the equilibrium currency hedging strategies. Section 6 illustrates the safe

haven bias: all else equal, investors will have a larger hedging ratio towards investment currencies than

the safe haven currencies, a result that cannot be directly replicated using linear correlation in classic

models. Section 7 concludes.

2 A parsimonious model that allows for equity-currency conta-

gion

In this section, we propose a model of equity and exchange rates that generates equity-currency contagion.

This is achieved by including in the equity and currency returns both cross sectionally and serially de-

pendent jump components, namely, mutually exciting jumps. We specify country-specific stocks, pricing

kernels and exchange rates in Section 2.1. For market completeness, we also introduce country-specific

stock derivatives. In Section 2.2, we give the pricing formula for call options in this context. Section 2.3

discusses how our model is related to the extant literature.

2.1 Set up

2.1.1 The equity market

In this section, we propose an equity-currency model that generates tail risk contagion between equity

risk and currency risk. Let there be n + 1 countries. Each country has its own currency. Let there be

a risk free money market, a country-specific stock index and a derivative written on the stock index in

each country, denominated in the domestic currency. We use superscript to denote in which currency

the quantities are measured and subscript to denote the referred object. Variables without a superscript

are prices denominated in the domestic currency. For instance, the domestic money market account

of country i by is denoted by Bi(t). We adopt the convention of denoting vectors and matrices using

boldface characters to distinguish them from scalars. It holds that

dBi(t) = Bi(t)ri(t) dt, (1)

where ri(t) is the continuously compounded risk free rate of country i.

Suppose the country stocks are exposed to a country-specific Brownian risk Wi, i = 0, . . . , n and a

global equity crash risk, which is modeled by a counting process Nm with intensity {λm(t)}. Denote the
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domestic stock of of country i by Sii , which follows the dynamics

dSi
Si

= ri dt+ µsiλm dt+ σsi
√
λm dWi + jsi( dNm − λm dt), (2)

where µsi is the expected excess return; Wi is a standard Brownian motion; and jsi is the jump amplitude

of country i, assumed to be a negative constant. The Brownian risk Wi, i = 0, . . . , n, are independent of

the jump risk Nm. The Brownian motions that drive the stocks of different countries are allowed to be

correlated. Denote the correlation between Wi and Wj by ρij .

In addition to the country stock, we introduce a stock option Oii(t) in each country. If the market is

free of arbitrage opportunities, there exists a risk neutral measure Qi,
3 under which

Oi(t) = EQit [g(Si(τ), λm(τ))],

for any t ≤ τ , where τ is the time to expiration.

The stock option provides exposure to the same risk factors to which the stock return is exposed

to. As we will see later, the introduction of stock options completes the equity market in the sense that

(1) the risk premiums of the equity Brownian motions and the equity jump component can be uniquely

pinned down; (2) a portfolio that belongs to the H2 space with any exposure to the equity Brownian

motion and equity jump component can be replicated using the stock and the stock option. To illustrate

the latter point, as Liu and Pan (2003) explain, one can start with the stock and add out-of-the-money

put options to the portfolio which provide more exposure to jump risk, in order to separate exposure to

jump risk from that to the diffusive price shock.

Let Eji (t) be the exchange rate between currency j and currency i, understood as the currency j price

per unit of currency i. We choose currency i = 0 as the base currency. A superscript of 0 indicates base

currency denominated variables.

If the exchange rate is stochastic, the money market of country i is a risky investment for investor from

country j, j 6= i. The money market of country i denominated in currency j has price Bji (t) = Bii(t)E
j
i (t),

it holds that

dBji (t)

Bji (t)
= rj(t) +

dEji (t)

Eji (t)
.

Similarly, equity i denominated in currency j has price Sji (t) = Sii(t)E
j
i (t) at time t.

Define the currency-hedged stock Ŝji (t) as

dŜji (t)

Ŝji (t)
=

dSji (t)

Sji (t)
−
( dBji (t)

Bji (t)
− dBj(t)

Bj(t)

)
.

3More on the risk neutral measure and derivative prices in the next section.
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The base-currency-hedged stock i for investor j can be constructed by a continuous-rebalanced portfolio

that invests 100% in the unhedged stock i, borrowing 100% from country i and lending domestically.

Effectively, borrowing abroad and lending domestically mimics the payoff of a currency forward contract

(see Campbell, Serfaty-de Medeiros, and Viceira (2010)).

Define the currency-hedged global equity index as the weighted average of country stocks. Denoted

in the base currency, it holds that

M̂0 =

n∑
i=0

hiŜ
0
i .

where hi is country i’s market capital as a proportion to the global capital. We have
∑n
i=0 hi = 1.

Note that hi is a currency-independent variable.

The return dynamic of the global equity index is given by

dM̂0(t)

M̂0(t−)
=

n∑
i=0

(
hiµ̂

0
siλmdt+ σsi

√
λmdWi + ĵ0si(dNm − λmdt)

)
=: µ0

mλm dt+ σm
√
λm dWm + j0m( dNm − λm dt), (3)

where

σm
√
λmdWm(t) =

n∑
i=0

hiσsi
√
λmdWi(t), j0m =

n∑
i=1

hiĵ
0
si ,

Define σs as a diagonal matrix containing σsi , i = 0, . . . , n on the diagonal, h as a vector containing hi, i =

0, . . . , n, and W (t) as a vector containing Wi(t), i = 0, . . . , n. We can see that Wm(t) = 1
σm
h′σsW (t),

σm =
√
h′Σh. Here, Σ is the covariance matrix of countries’ equities. Define L as the is a correlation

matrix with ones on the diagonal and correlation coefficients of the currency-hedged equities off-diagonal.

LL′ =



1 ρ01 . . . ρ0n

ρ01 1 . . . ρ1n
...

...
. . .

...

ρ0n ρ1n . . . 1


.

It holds that Σ = σsLL
′σ′s.

2.1.2 Pricing kernel processes and exchange rates

The change in exchange rate is effectively the ratio of the change in pricing kernel processes of the two

countries (Backus, Foresi, and Telmer 2001). We first specify the pricing kernel process of each country

and then derive the consistent exchange rate process thereafter.
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Following Pan (2002), we specify the pricing kernel process of country i, i = 1, . . . , n, to be of the

following parametric form

dπi(t)

πi(t−)
=− (ri(t) dt+ ηi

√
λm(t) dWm + vi

√
λi(t) dZi) + κi( dNm(t)− λm(t) dt)

+ (yi dNi(t)− E[yi]λi(t) dt). (4)

Here, the pricing kernel also prices risks that do not drive equity returns. We introduce two new priced

risk factors, a country-specific Brownian motion Zi, assumed to be independent of other risk factors and

also of Zj , j 6= i, and a jump component Ni with jump intensity λi(t) at time t. In Equation (4), ηi, κi are

equity Brownian and jump risk premium in country i; vi is a constant that represents the risk premium

of Brownian motion Zi; yi is allowed to be a random variable.

The literature has shown that there are risk dimensions that influence currency returns in international

economies but are absent in a single-economy equity market.4 Our pricing kernel specification (4) is

consistent with Bakshi, Carr, and Wu (2008) and Brusa, Ramadorai, and Verdelhan (2016), in that apart

from domestic equity risk factors, the pricing kernel process of a country is also driven by foreign equity

risk factors as well as risk factors which are not spanned in the international equity market.

Notice that the pricing kernel is driven by the global equity Brownian risk Wm, the global equity jump

risk Nm and currency-specific risks Zi, Ni. This is intuitive, the pricing kernel process πi determines the

risk premium of risky investment for investors in country i. On the equity side, consistent with inter-

national CAPM (see Solnik (1974)), only systematic risks are compensated. In our case, the systematic

equity risk factors are the Brownian risk Wm and the jump risk Nm, as those that drive the global equity

index.

The equity jump has deterministic jump sizes and is compensated only with the jump timing risk.

Under the risk neutral measure, the jump component Nm has intensity (1 + κi)λm under measure Qi.

With respect to the currency jump component, if we restrict that the jump risks are compensated for

jump size risk but not for jump timing risk, as in Pan (2002), then only the jump size distribution

changes under Qi (determined by the distribution of yi) and the jump intensity remains the same after

the measure change.

As a normalization, we assume that the base currency is stable and is free of currency-specific risks.

Following Pan (2002), the pricing kernel process of the base country is given by

dπ0(t)

π0(t−)
=− η0

√
λm(t) dWm + κ0( dNm(t)− λm(t) dt), (5)

4See, for example, Brandt, Cochrane, and Santa-Clara (2006).
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where η0, κ0 represent equity Brownian and jump risk premium in the base country. Note that the base

currency can be regarded as a reserve currency. The reserve currency feature of the base currency is

produced by the fact that only systematic equity risks Wm, Nm are priced in the base country.

According to Backus, Foresi, and Telmer (2001), if the markets are integrated, exchange rates reflect

the differences in pricing kernels in the associated markets.

E0
i (t) = πi(t)/π0(t), (6)

or, in SDE representation, x where

µ0
ei = η0(η0 − ηi)− κiji, σei = η0 − ηi, j0ei =

κi − κ0
1 + κ0

. (7)

Notice that we may kill the equity jump in the exchange rate process by setting κi = κ0,∀i. In other

words, currencies are free of equity jump risks only if the equity jump component is compensated the

same way in every market.

We see that in the base country, since only systematic equity risk factors are priced, the country-

specific currency risks do not lead to any risk premia. Investors from the base country are compensated

for taking currency risk only through the common risk factors that drive both the equity and the exchange

rate.

It is clear from Equation (4) and (5) that πi, i = 0, . . . , n, are local martingales under the real world

measure. If πi are actually martingales, one can verify according to the Lenglart-Girsanov Theorem that

the pricing kernels are the Radon-Nikodym derivatives that changes the measure P to a risk neutral

measure Qi, under which the global equity index and country equities denominated in currency j follow

dM̂ j(t)

M̂ j(t−)
=
(
µ̂jm − ηjσm + ĵjmκj

)
λm(t) dt+ σm

√
λm(t) dWQj

m (t) + ĵjm( dN
Qj
m,t − (1 + κj)λm(t) dt),

dŜji (t)

Ŝji (t
−)

=
(
µ̂jsi −

ηj
σm

n∑
l=0

hlρilσsiσsl + ĵjsiκj
)
λm(t) dt+ σi

√
λm(t) dW

Qj
i (t)

+ ĵjsi( dN
Qj
m,t − (1 + κj)λm(t) dt),

where W
Qj
i is a standard Brownian motion under the risk neutral measure of country j, with W

Qj
i (t) =

Wi(t) − ηj
∫ t
0

√
λm(s) ds. The jump process N

Qj
m (t) has intensity (1 + κj)λm(t) under the martingale

measure Qj . In order that M̂(t), Ŝji (t) are local martingales under the risk neutral measure of country j,
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it should hold that 
µ̂jm = σmηj − κj ĵjm,

µ̂jsi =
ηj
σm

∑n
l=0 hlρilσsiσsl − κj ĵjsi .

(8)

Note that the expected excess returns of a country’s stock consists of the risk premium of (I) the country-

specific Brownian risk, and (II) the global equity crash risk. In particular,
∑n
l=0 hlρilσsiσsl is the instan-

taneous covariance between the market equity return and stock i. Then the premium for country-specific

Brownian risk is the premium for the market equity times the covariance between the market equity and

stock i divided by the instantaneous variance of the market equity. Similarly, the premium for the jump

risk of equity i is the ratio of the jump amplitude of equity i and that of the market equity. i.e.,

µ̂jsi(I) :=
ηj
σm

n∑
l=0

hlρilσsiσsl =
Cov(R̂ji (c), R̂

j
m(c))

Var(R̂jm(c))
µ̂jm(I), µ̂jsi(II) := −κj ĵjsi =

ĵjsi
ĵjm
µ̂jm(II).

Here, R̂ji (c), R̂
j
m(c) denote the continuous part of the return of stock i and the market equity, respectively.

µ̂jsi(I) is the country-specific volatility risk premium that exhibits a CAPM structure, and µ̂jsi(II) is the

jump premium.

In addition, free of arbitrage opportunities implies that similar structure applies to the countries’

derivative prices

µ̂joi =
ηj
σm

n∑
l=0

hlρilσoiσol − κj ĵjoi .

2.1.3 Equity-currency contagion

We allow for jump propagation between equity and currencies by letting Nm, Ni to be mutually exciting

with intensities λm(t), λi(t) that follow

dλm(t) = αm(λm,∞ − λm(t)) dt+ βm,m dNm(t) +

n∑
l=1

βl,m dNl(t),

dλi(t) = αi(λi,∞ − λi(t)) dt+ βm,i dNm(t) +

n∑
l=1

βl,i dNl(t),

where αm, αi, λm,∞, λi,∞, βi,m, βm,i, βi,j , βm,m ≥ 0, ∀i, j.

The occurrence of a jump in the equity market at time t, i.e., dNm(t) = 1, not only raises the intensity

of the equity jump component, λm(t), by a non-negative amount βm,m, but also increases the intensity of

the currency jump component, λi(t), by a non-negative amount βm,i. After being excited, the intensity

of both the equity jump component λm(t) and the currency jump component λi(t) mean revert to their

respective steady state, λm,∞λi,∞, at exponential decaying rates αm, αi, until they get excited by a next
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jump occurrence.

In the remainder, we call β, defined as

β := (βm, β1, . . . , βn) =



βm,m β1,m . . . βn,m

βm,1 β1,1 . . . βn,1
...

...
. . .

...

βm,n β1,n . . . βn,n


,

the excitation matrix between equity and currency i; βm,m is called the equity self excitor ; βi,i is called

the currency self excitor of currency i; βm,i is called the equity-currency excitor of currency i, which

measures the excitation from the equity jump component to the jump component of currency i; βi,m is

called the currency-equity excitor of currency i, which measures the excitation from the jump component

of currency i to the equity jump component.

Let λ(t) = (λm(t), λ1(t), . . . , λn(t))′. The unconditional expectation of the jump intensity is given by

E[λ(t)] = (In − β./(αι′))−1λ∞,

where In is an n by n identity matrix; α,λ∞ are vectors of αi, λi,∞, i = m, 1, . . . , n, respectively; ι is a

column vector of all ones. The intensity processes can be made stationary by imposing

(In − β./(αι′))−1 > 0.

This is a general yet parsimonious model which generates contagion between the equity market and

the foreign exchange market. The equity and currency model given in (2) and (??) is a natural extension

of the geometric Brownian motion models prevailing the equity-currency portfolio literature (see Solnik

(1974), Black (1990), Campbell, Serfaty-de Medeiros, and Viceira (2010)). The model also generates

stochastic volatility driven by jump intensity processes.

The mutually exciting jump components in Equation (2) and (??) are able to produce important

stylized facts of equity-currency behavior. For example, the stock returns exhibit jump clustering as a

result of the time series excitation, and equity-currency contagion as a result of the cross section excitation

between these two asset classes. The market equity and currencies have an instantaneous covariance of

σmσeiλm(t), which is stochastic, and increases when the equity market is in turmoil. This is consistent

with the empirical findings of stochastic covariance between the equity market and the foreign exchange

market. In addition, during market downturns, equity market turbulence can lead to currency turmoil

and vice versa, creating non-linear excess dependence between equity market and the foreign exchange
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market.

The dependence generated by mutually exciting jumps have two distinctive features. The first is

that the dependence between equity and currency is not simultaneous. Under contagious equity-currency

risks, the exchange rate is likely to experience a jump in succession of an equity market plunge once the

currency intensity builds up as a result of equity jumps. The dependence of the extreme movements in

these two markets is neither simultaneous nor certain. Therefore it is not replicable by common risk

factors. The second property is that the model allows for asymmetric excitation. Even if two currencies

have the same influence on the equity market (i.e., same currency-equity excitors), they are allowed to

have different exposure to equity market turmoil (i.e., different equity-currency excitors). It allows for

separate analysis on the two way equity-currency contagion. A currency whose value remains relatively

stable during equity market turbulence (i.e., low equity-currency excitor) has the property of a safe haven

currency.

2.2 Option pricing

Suppose the market is free of arbitrage, then the price of an option Oj(t) written on stock Sj(t), with

payoff function f(Sj(τ)) is given by

Oj(t) = e−rj(τ−t)EQjt [f(Sj(τ))]. (9)

In this section, we consider the price of a standard call option on the domestic equity of each country.

Appendix D also gives the pricing formula for put options and straddles. The payoff function for the call

option is given by

Cj(τ) = f(Sj(τ)) = (Sj(τ)−K)+,

where K is the strike price.

The following proposition gives the call option price formula Cj(t), t ≤ τ, as a function of the stock

price and the equity jump intensity at time t.

Proposition 1. The call option price Cj(t), t ≤ τ is given by

Cj(t) = G1,−1(− logK)−KG0,−1(− logK), (10)

where

Ga,b(w) =
1

2
ψt(a)− 1

π

∫ ∞
0

Im[e−iuwψt(a+ iub)]

u
du, (11)
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with

ψt(u) = Sj(t)
u exp(P +Qλm(t)). (12)

Here, P = P(t),Q = Q(t),

d

dt
Q(t) =

(1

2
σ2
ej + jej (1 + κj)

)
u+ αmQ(t)− 1

2
u2σ2

ej − (1 + κj)
(

(1 + jej )
ueβm,mQ(t) − 1

)
, Q(τ) = 0

d

dt
P(t) =− αmλm,∞Q(t), P(τ) = 0.

Therefore the dynamics of the options prices are given by

dOj(t)

Oj(t−)
=rj(t) dt+ µo(Sj(t), λm(t))λm(t) dt+ σo(Sj(t), λm(t))

√
λm(t) dWm(t)

+ jo(Sj(t), λm(t))( dNm(t)− λm(t) dt),

where

σoj (Sj(t), λm(t)) =
σmSj(t)

O(t−)

∂f(Sj(t), λm(t))

∂Sj(t)

∣∣∣∣
(Sj(t),λm(t))

joj (Sj(t), λm(t)) =
1

Oj(t−)

(
f
(
(1 + jsj )Sj(t), λm(t) + βm,m

)
− f

(
Sj(t), λm(t)

))
.

The price dynamics of the index option can be expressed as

dOj(t)

Oj(t−)
=rj(t) dt+ µoj (Sj(t), λm(t))λm(t) dt+ σoj (Sj(t), λm(t))

√
λm(t) dWj(t)

+ joj (Sj(t), λm(t))( dNm(t)− λm(t) dt),

where

σoj (Sj(t), λm(t)) =
σsjSj(t)

Oj(t−)

∂g(Sj(t), λm(t))

∂Sj(t)

∣∣∣∣
(Sj(t),λm(t))

joi(Sj(t), λm(t)) =
1

Oj(t−)

(
g
(
(1 + jsjSj(t), λm(t) + βm,m

)
− g
(
Sj(t), λm(t)

))
.

We will drop the arguments of µoj (Sj(t), λm(t)), σoj (Sj(t), λm(t)), joj (Sj(t), λ−M(t)) and simply denote

them by µoj (t), σoj (t) for notation simplicity, with the time t argument indicating state dependence.
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2.3 Relation to the literature

2.3.1 Relation to a Poisson jump-diffusion economy

The pricing kernel specification of the base country can also be regarded as a normalization on the

domestic pricing kernel. Suppose the jump components Nm, Ni were Poisson jumps with intensity λm

and λi. Then the assumption on the base currency can be regarded as a normalization without loss of

generality. To see this, observe the exchange rate of currency i against currency j:

dEji,t

Eji,t−
=
(
rj(t)− ri(t) + (µei − µej − σeiσej + σ2

ej )λm + (v2j − E
[ y2j

1 + yj

]
)λj

)
dt

+ (σi − σj)
√
λm dWm(t)− vi

√
λi dZi(t) + vj

√
λj dZj(t) +

jei − jej
1 + jej

( dNm(t)− λm(t) dt)

+ (yi dNi(t)− E[yi]λi(t) dt)−
( yj

1 + yj
dNj(t)− E

[ yj
1 + yj

]
λj(t) dt

)
=
(
rj(t)− ri(t) + µ̄ei λ̄m

)
dt+ σ̄ei

√
λ̄m dW̄m(t) + v̄i

√
λ̄i dZ̄i(t) + (ȳi dN̄i(t)− E[ȳi]λ̄i(t) dt).

And the global equity denominated in currency j is given by

d(M̂ j/E0
j )(t)

(M̂ j/E0
j )(t−)

=rj(t) dt+
(
µm − σmσj − µj + σ2

j

)
λm(t) dt+ (v2j − E

[ y2j
1 + yj

]
)λj dt

+ (σm − σj)
√
λm(t) dWm(t)− vj

√
λj dZj +

jm − jj
1 + jj

( dNm(t)− λm(t) dt)

−
( yj

1 + yj
dNj − E

[ yj
1 + yj

]
λj dt

)
=: rj(t) dt+ µ̄mλ̄m dt+ σ̄m

√
λ̄m dW̄m + j̄m( dN̄m − λmdt).

Here, W̄m(t), Z̄i(t) are independent and standard Brownian motions. N̄m, N̄i are Poissonian jumps with

intensities λ̄m, λ̄i given by

λ̄m = λm + λj , λ̄i = λi + λj , (13)
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In addition,

µ̄m =
(µm − σmσj + σ2

j )λm +
(
v2j − E

[
y2j

1+yj

])
λj

λm + λj
,

σ̄2
i =

(σi − σj)2λm + v2jλj

λi + λj
,

v̄i = v2i
λi

λi + λj
,

σ̄2
m =

(σm − σj)2λm + v2jλj

λm + λj
.

From which we see that currency j can be regarded as the base currency and the model can be rewritten

as the parametric form of Equation (5) by redefining the parameters.

The model proposed in the last section, therefore, can be regarded as a natural extension of the

standard Poissonian jump diffusion model, in the sense that we let the Poissonian jumps to be mutually

exciting in order to generate equity-currency contagion.

2.3.2 Relation to factor models

Should the jump factors Nm, Ni, i = 1, . . . , n, be Poissonian, the pricing kernel of country i could be

decomposed orthogonally into an equity component πmi and a currency component πsi as in Bakshi, Carr,

and Wu (2008), 

dπ
(m)
i (t)

π
(m)
i (t−)

= −ηi
√
λm dWm + κi( dNm(t)− λm dt),

dπ
(s)
i (t)

π
(s)
i (t−)

= −vi
√
λi dZi + (yi dNi(t)− E[yi]λi(t) dt),

πi,t = exp(−
∫ t
0
ri(s) ds)π

(m)
i (t)π

(s)
i (t).

(14)

The pricing kernel processes given in Equation (4) exhibit a factor structure. Notice that not all

risk factors are priced in the pricing kernel of country j. The consequence of this is that exchange rates

of different currencies are exposed to different risk factors. Similar assumptions regarding the pricing

kernel (that the pricing kernels are driven by both global factors and country-specific factors) can be

found in Lustig, Roussanov, and Verdelhan (2011), Bakshi, Carr, and Wu (2008), and Farhi, Fraiberger,

Gabaix, Ranciere, and Verdelhan (2009); consistent with Bates (1996), Carr and Wu (2007), the model

has Gaussian and non-Gaussian factors; it is also consistent with Lustig, Roussanov, and Verdelhan

(2014) who find countercyclical risk premium. We allow for the possibility that risk factors which are not

priced in the equity to be priced in the pricing kernels, as in Bakshi, Carr, and Wu (2008).

Our model is consistent with Brusa, Ramadorai, and Verdelhan (2016), in which case there are three

global factors that drive the stochastic discount factors. The first is a global equity factor Nm which can

be priced exactly the same way in every country by setting κi = κj , ∀i, j. In this case, this factor will not
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appear in the exchange rate process but drives the world equity return. The second is a country-specific

currency factor Ni. This factor only drives the exchange rate but not the equity returns, potentially

capturing the crash risk in the carry trade. The third is an equity-currency factor Wm, which drives both

the equity market and the foreign exchange rate, mimicking the “dollar factor” in Brusa, Ramadorai,

and Verdelhan (2016).

3 Optimal asset allocation

Let there be a representative investor from each country. In this section we define and solve the optimal

asset allocation problem for every investor with different home currencies. Instead of raw assets, which are

foreign assets quoted in local-currency-denominated prices, we will look at currency-hedged asset prices,

which has a one-to-one correspondence to the raw prices but easier to work with. Section 3.1 derives

the dynamics of currency-hedged asset returns. Section 3.2 solves the asset allocation problem with the

countries’ stocks, stock options and bonds as the asset universe. Section 3.3 presents the Separation

Theorem which states that the asset universe can be collapsed into a global equity, a global derivative

portfolio and countries’ bonds without any utility cost.

3.1 Returns on the currency-hedged-assets

When investing in a foreign stock, the investor is faced with not only the equity risk but also the currency

risk. We will formulate the optimal asset allocation problem in terms of currency-hedged assets instead of

the original assets. There is a one-to-one correspondence between the allocation strategy on the currency-

hedged assets and that on the original assets. In the extreme case, an unhedged position in foreign stock

j corresponds to a long position in currency j equal to the holding of stock j, whereas a fully hedged

stock position corresponds to a net zero position in that foreign currency.

For an investor whose domestic currency is the base currency, a currency-hedged equity j, j =

0, 1, . . . , n, has return dynamics

dŜ0
j (t))

Ŝ0
j (t)

=
d(Sj(t)E

0
j (t))

Sj(t)E0
j (t)

−
( dB0

j (t)

B0
j (t)

− dB0(t)

B0(t)

)
=
(
µsj +

σeiσsi
σm

n∑
l=1

ρjlhlσel +
jej (jej − jsi)

1 + jej

)
λm(t) dt+

(
E
[ y2j

1 + yj

]
+ v2j

)
λj(t) dt

+ σsj
√
λm(t) dWj(t) + jsj (1 + jej )( dNm(t)− λm(t) dt)

=:µ̂0
sjλm dt+ σsj

√
λm dWj(t) + ĵ0sj ( dNm − λm dt),

where µ̂0
sj = µsj +

σeiσsi
σm

∑n
l=1 ρjlhlσel +

jej (jej−jsi )
1+jej

is the expected return on stock j hedged against
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currency j risk for an investor from the base country; ĵ0sj = jsj (1 + jej ) is the jump amplitude of the

currency hedged stock.

One can construct a currency-hedged derivative j in the same way

dÔ0
j (t)

Ô0
j (t)

=
d(Oj(t)E

0
j (t))

Oj(t)E0
j (t)

−
( dB0

j (t)

B0
j (t)

− dB0(t)

B0(t)

)
=: µ̂0

ojλm dt+ σoj
√
λm dWj(t) + ĵ0oj ( dNm − λm dt),

with µ̂0
oj = µoj +

σejσoj
σm

∑n
l=1 ρjlhlσel +

jej (jej−joi )
1+jej

, ĵ0oj = joj (1 + jej ).

Similarly, for investor i, i = 1, . . . , n, the return on currency hedged stock j, j = 0, 1, . . . , n, and

currency hedged derivative j are given by

dŜij(t)

Ŝij(t)
=

d(Sj(t)E
0
j (t)/E0

i (t))

Sj(t)E0
j (t)/E0

i (t)
−
( dBij(t)

Bij(t)
− dBi(t)

Bi(t)

)
=:µ̂isjλmdt+ σsj

√
λm dWj(t) + ĵisj ( dNm − λm dt),

dÔij(t)

Ôij(t)
=

d(Oj(t)E
0
j (t)/E0

i (t))

Oj(t)E0
j (t)/E0

i (t)
−
( dBij(t)

Bij(t)
− dBi(t)

Bi(t)

)
=:µ̂iojλmdt+ σoj

√
λmdWj(t) + ĵioj (dNm − λmdt).

Here, µ̂isj = µsj +
(σei−σej )σsj

σm

∑n
l=1 ρjlhlσsl , ĵisj = jsj (1 + jei), µ̂

i
oj = µoj +

(σei−σej )σoj
σm

∑n
l=1 ρjlhlσel ,

ĵioj = joj (1 + jei).

3.2 Solving for the optimal asset allocation problem

Define the portfolio weights vector ŵj(t) = (ŵjs0(t), . . . , ŵjsn(t), ŵjo0(t), . . . , ŵjon(t), ŵje0(t), . . . , ŵjen(t))′ be

a 3(n+ 1)× 1 vectored process, which are adapted, cáglád, and bounded in L2.5 Problem 1 defines the

asset allocation problem.

Problem 1. Let there be a representative investor from each country j with initial wealth x, who has

expected power utility with risk aversion u(xjj) = 1
1−γj x

1−γj , γj > 0,∀j. Each investor is allowed to invest

in foreign as well as domestic risk-free and (currency-hedged) risky assets. Investors neither consume nor

receive any intermediate income. Assume that investors can rebalance their portfolios in continuous-time

without incurring any transaction costs. The objective is to maximize the expected utility over terminal

wealth Xj(T ) through optimal continuous time trading.

sup
ŵj

E0

[Xj(T )1−γj

1− γj

]
, (15)

5Since portfolio weights cannot anticipate jumps, they are Ft− measurable and left continuous (cf. Aı̈t-Sahalia and Hurd
(2012)).
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subject to the budget constraint:

dXj(t)

Xj(t−)
=rj(t) dt+

n∑
i=0

ŵjsi
dŜji (t)

Ŝji (t
−)

+

n∑
i=0

ŵjoi
dÔji (t)

Ôji (t
−)

+

n∑
i=1

ŵjei
dBji (t)

Bji (t
−)
. (16)

Define the indirect utility function J for investor j at time t = 0 as

J(t, x,λ) = sup
ŵj

E
[Xj(T )1−γj

1− γj

]
,

where x = Xj(t),λ = (λm(t), λ1(t), . . . , λn(t))′ are current values of the wealth and jump intensities.

Define θjwi , θ
j
n as the portfolio exposure to equity risk factors Wi, Nm,


θjwi = ŵjsiσsi + ŵjoiσoi +

∑n
l=1 ŵ

j
sl
σslhlσei/σm,

θjn =
∑n
i=0(ŵjsi ĵ

j
si + ŵjoi ĵ

j
oi) +

∑n
i=1 ŵ

j
ei ĵ

j
ei .

(17)

Notice that σeidWm =
∑n
l=0 σeihlσsl/σmdWl. Therefore σeihlσsl/σm is the exposure to the Brownian

motion Wl in exchange rate E0
i . Write in matrix notation θjw = (θjw0

, . . . , θjwn)′.

We are going to solve for the optimal θjw, θ
j
n, ŵ

j
ei , i = 1, . . . , n, by first conjecturing (which we later

verify) that the indirect utility function is of the form

J(t, x,λ) =

(
xj
)1−γj

1− γj
exp(P (t) +Q(t)′λ) (18)

where P (t) and Q(t) are functions of time but not of the state variables x and λ.

The following proposition provides an analytical solution to the optimal portfolio strategy.

Proposition 2. There exists a solution ŵj(t) = (ŵjs0(t), . . . , ŵjsn(t), ŵjo0(t), . . . , ŵjon(t), ŵje0(t), . . . , ŵjen(t))′

for Problem 1. The optimal portfolio weight is given by solving the following equations for the elements
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of ŵj,



−E[yi]− γjŵjeiv
2
i + eQ

′βiE[(1 + ŵjeiyi)
−γjyi] = 0, i = 1, . . . , n,

ŵjs0

...

ŵjsn

ŵjo0

...

ŵjon



=



σs0 0 . . . 0 σo0 0 . . . 0

0 σs1 . . . 0 0 σo1 . . . 0

...
...

. . .
...

...
...

. . .
...

0 0 . . . σsn 0 0 . . . σon

ĵjs0 ĵjs1 . . . ĵjsn ĵjo0 ĵjo1 . . . ĵjon



−1

θjw0
−
∑n
l=1 ŵ

j
el
σelh0σs0/σm

...

θjwn −
∑n
l=1 ŵ

j
el
σelhnσsn/σm

θjn −
∑n
l=1 ŵel ĵel


,

ŵje0 = 1−
∑n
l=0(ŵjsl + ŵjol)−

∑n
l=1 ŵel ĵel .

(19)

where 
θjw =

ηj
γjσm

σ′sh,

θjn = (1 + κj)
− 1
γj exp( 1

γj
Q′βm)− 1.

(20)

Here, ŵjei = ŵjei(t = 0), Q = Q(t = 0), in which Q(t) = (Q0, Q1, . . . , Qn) is a deterministic process

defined by the ordinary differential equation, for i = 1, . . . , n,


Q̇m(t) = αmQm(t) +

γj−1
2γj

η2j + (γj − 1)κj − γj(1 + κj)
γj−1

γj exp
(

1
γj
Q(t)′βm

)
+ γj

Q̇i(t) = αiQi(t) + (1− γj)ŵjei(t)E[yi] + 1
2γj(1− γj)ŵ

j
ei(t)

2v2i − E[(1 + ŵjei(t)yi)
1−γj ] exp(Q(t)′βi) + 1,

Ṗ (t) = −(1− γj)rj − αmλm,∞Q0(t)−
∑n
i=1 αiλi,∞Qi(t).

(21)

with P (T ) = 0, Q(T ) = 0.

The pricing kernel of the base country shows that only the two equity risk factors are priced in the

base country. The stocks and stock derivatives are sufficient to complete the equity market in the sense

that they are able to provide any (admissible) exposure to the two risk factors. It seems that the optimal

portfolio should consist of the stocks and the stock options exclusively and any foreign currency should

be redundant. It would be true if the equity jump component Nm and the currency jump component

Ni are independent or have linear dependency. Due to the nonlinear dependence structure generated

by the mutually exciting jumps, the investor would demand foreign currency exposure for their hedging

potentials even if the currency-specific risks are not rewarded.

As one may expect, in a Poisson jump-diffusion economy where both equity and currency dynamics
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follow (correlated) Poisson jump-diffusion processes, the base investor would never choose to invest in

any foreign currency (provided that he has access to stocks and stock options) if the currency-specific

risks are not compensated in his country. This property is summarized in Remark 1.

From Proposition 2, the optimal portfolio weights for any investor can be calculated by solving

simultaneously a simple pair of equations, Equation (19) and (21). Each pair of equations are easily

solved numerically using standard finite difference method. Specifically, for j = 0, . . . , n, one starts with

the terminal condition Qi(T ) = 0 to derive the optimal weights at the terminal time T , ŵjei(T ). Then

one goes back a small time interval ∆, and calculate Qji (T − ∆) using ŵjei(T − ∆). Continue with the

recursive algorithm until one reaches time zero. A step size as small as a quarter of a day is enough to

generate the desired accuracy. The computation burden in Proposition 2 is almost negligible compared

to numerically solving the multi-dimensional HJB equation (40).

The semi-closed form of the portfolio weights crucially depends on the state-independent feature of

θjw, θ
j
n. Note that although θjw, θ

j
n are independent of the state variables, the weights on the stocks and

stock options are not. This is due to the fact that the price dynamics of the stock options, in particular,

σoi(t), joi(t), are driven by state variables Sii(t), λm(t). Therefore there is market timing in the optimal

portfolio weights on the stocks and stock options.

Remark 1. In the context of equity-currency contagion, even if the idiosyncratic currency risk is not

rewarded in the base country, the investor would not hedge 100 percent of the currency risk, as long as the

currency risk is able to spillover to the equity market. The nonlinearity of dependence between the equity

market and the foreign exchange market as a result of contagion leads to non-zero currency exposure

for hedging purposes. If the dependence structure were linear, the investor will opt for a total hedge of

currency risks in the absence of currency risk premia.

Remark 2. One important distinction between the optimal currency hedging strategy predicted by our

model and that of Campbell, Serfaty-de Medeiros, and Viceira (2010) is that the optimal currency demand

in our model is home currency dependent. In Campbell, Serfaty-de Medeiros, and Viceira (2010), for

example, the residents of both the United States and Germany will have the same optimal demands for

Australian Dollar corresponding to a given equity portfolio. In our model, however, since the currency

demand is generated through nonlinear dependence between currencies and the equity market, investors

from different home currencies would have different demand for a foreign currency per unit of world

equity invested.
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3.3 The Separation Theorem

Solnik (1974) proves a three-fund separation theorem in case of a geometric Brownian motion model. In

particular, he shows that investors are indifferent between the country stocks and a market equity index.

Observe that in Equation (16), while there are n+ 2 equity risk factors (n+ 1 country-specific Brownian

risk factors and one global equity jump factor), there are 2(n+ 1) equity assets, one stock and one stock

option from each country. One can also see from Equation (19) that the matrix to be inverted has full

row rank but not full column rank, indicating redundant equity assets.

The next theorem presents the n+ 1 + 2 fund separation result of our model.

Theorem 1. Every investor is indifferent between choosing portfolios from the original 3(n + 1) assets

or from (n+ 1) + 2 funds. From the perspective of investor j, a possible choice for those funds is

• the market equity index (hedged against currency risk) M̂ j, as defined in Equation (??).

• a portfolio of stock derivatives (hedged against currency risk) D̂j, defined as

D̂j =

n∑
i=0

kiÔ
j
i ,

with

(k0, . . . , kn)′ =
σ−1o σ′eh

ι′(σ−1o σ′eh)
, (22)

• the n+ 1 bonds of each country

In light of Theorem 1, the investable asset universe for every investor is the n + 1 bonds of each

country (the domestic bond is regarded as the risk-free asset), a currency-hedged global equity index

dM̂ j(t)

M̂ j(t)
= µjmλm(t) dt+ σm

√
λm(t) dWm(t) + jjm( dNm(t)− λm(t) dt),

and a currency-hedged portfolio of derivatives

dD̂j(t)

D̂j(t)
= µjdλm(t) dt+ σd

√
λm(t) dWm(t) + jjd( dNm(t)− λm(t) dt),

with

σd =
σm

ι′(σ−1o σ′eh)
, jjd =

h′σeσ
−1
o

ι′(σ−1o σ′eh)
jjo .

We may redefine the optimal asset allocation problem in terms of the market equity, market derivative

portfolio and the bonds.
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Problem 2. Let there be a representative investor from each country j, who has expected power utility

with risk aversion γj and aims to maximize his expected utility at time t = 0 through optimally investing:

sup
ŵj

E0

[Xj(T )1−γj

1− γj

]
, (23)

subject to the budget constraint:

dXj(t)

Xj(t−)
=rj dt+ ŵjm

dM̂ j(t)

M̂ j(t−)
+ ŵjd

dD̂j(t)

D̂j(t−)
+

n∑
i=1

ŵjei
dB̂ji (t)

B̂ji (t
−)
. (24)

The following proposition solves the above portfolio choice problem.

Proposition 3. The asset allocation problem in Problem 2 has a solution ŵj = (ŵjm, ŵ
j
d, ŵ

j
e0 , . . . , ŵ

j
en).

The optimal portfolio weight is given by solving the following nonlinear equation for ŵj,



−E[yi]− γjŵjeiv
2
i + eQ

′βiE[(1 + ŵjeiyi)
−γjyi] = 0, i = 1, . . . , nŵjm

ŵjd

 =

σm σo

ĵjm ĵjd


−1θjm −

∑n
l=1 ŵ

j
el
σelh0σs0/σm

(1 + ĵjej )θ
j
n −

∑n
l=1 ŵ

j
el
jel

 , (25)

where 
θjm = 1

γj
ηj ,

θjn = (1 + κj)
− 1
γj exp( 1

γj
Q′βm)− 1.

(26)

Here, ŵjei = ŵjei(t = 0), Q = Q(t = 0), in which Q(t) is a deterministic vectored process given by

Equation (21).

4 Properties

In Section 3.3 we show that the asset allocation problem boils down to optimally investing in the global

equity index, the global derivative portfolio and currencies. In this section, we focus on the optimal weights

on this simplified universe of assets (instead of the country-specific stocks and derivatives), especially the

optimal weights on currencies. In Section 4.1, we decompose the optimal net currency weight into four

components, among which the intertemporal hedging component is of particular interests. In Section 4.2,

we conduct comparative statics analysis of the intertemporal hedging demand with respect to jump risk

parameters.
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4.1 Decompose the currency weight

Now that we have solved the asset allocation problem for investors from each country, we study the

property of the optimal net currency weights in their portfolios in this section. Note that the solutions

given by proposition 3 are general results where exchange rates are exposed to both the equity jump

component and the currency-specific jump component. In this section, we make the simplified assumption

that ji = 0,∀i = 1, . . . , n.

We can write the HJB equation in terms of portfolio weights on the global equity index, the derivative

portfolio and the risky currencies.

0 = sup
ŵj

{
Jt +

(
rj + ŵjm(µ̂jm − ĵjm)λm + ŵjd(µ̂

j
d − ĵ

j
d)λm +

n∑
i=1

ŵjei(µ̂
j
eiλm − E[yi]λi)

)
Jxx

+ αm(λm,∞ − λm)Jλm +

n∑
i=1

αi(λi,∞ − λi)Jλi +
1

2

((
ŵjmσm

)2
λm +

(
ŵjdσd

)2
λm

+

n∑
i=1

(
ŵjei
)2

(σ2
eiλm + v2i λi) + 2ŵjmŵ

j
dσmσdλm + 2

n∑
i=1

ŵjmŵ
j
eiσmσeiλm

+

n∑
i=1

n\i∑
l=1

ŵjeiŵ
j
el
σeiσelλm + 2

n∑
i=1

ŵjdŵ
j
eiσoσeiλm

)
Jxxx

2

+ λm

(
J
(
x(1 + ŵjmĵ

j
m + ŵjdĵ

j
d),λ+ βm

)
− J

)
+

n∑
i=1

λiE
[(
J
(
x(1 + ŵjeiyi),λ+ βi

)
− J

)]}
.

If ŵjm, ŵ
j
d, ŵ

j
ei given by Proposition 3 are optimal, then by substituting J for its functional form (18), ŵjei

must satisfy the following first order conditions

0 =µ̂jeiλm − E[yi]λi − γj
(
ŵjdσdσeiλm + ŵjmσmσeiλm +

n∑
l=1

σelσeiλm + ŵjei(σ
2
eiλm + v2i λi)

)
+ λie

Q′βiE[(1 + ŵjeiyi)
−γjyi], (27)

=:aji − γj
(
ŵjdσid + ŵjmσim +

n∑
l=1

ŵjelσjl

)
+ λi(Yi − E[yi]) + λi(e

Q′βi − 1)Yi,

where aji = µ̂jiλm is the expected excess return of currency i; σid = σdσeiλm is the covariance between

the index option and currency i for the investor from the base country; σim = σmσeiλm is the covariance

between the market equity portfolio and currency i; σil = σeiσelλm is the covariance between currency j

and currency l; bi = σ2
eiλm+v2i λi is the instantaneous variance of currency i; and Yi = E[(1+ŵeiyi)

−γjyi]

is the marginal utility increase induced by jump component Ni from investing in one unit of the foreign

currency i for the investor from the base country.
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Rearrange Equation (27) and get

ŵjei =
1

γjbi

{
aji︸︷︷︸
I

−γj(ŵjdσid + ŵjmσim +

n\i∑
l

ŵjelσei)︸ ︷︷ ︸
II

+λiYi︸︷︷︸
III

+λi(e
Q′βi − 1)Yi︸ ︷︷ ︸
IV

}
. (28)

The optimal portfolio weights consist of a risk premium demand (I), a risk management demand (II),

a myopic buy-and-hold demand (III), and an intertemporal hedging demand (IV).

The risk premium demand (I) is determined by the expected excess return on investing in the foreign

currency i. It is a return-driven demand. A larger expected excess return indicates larger appreciation

of the currency in expectation with respect to the domestic currency. The risk management demand (II)

exploits the diversification benefit of investing in the risky currency contained in the covariance between

the market equity, equity derivative portfolio and other risky currencies. This is the demand that has

been extensively studied in the international empirical finance literature. For example, Glen and Jorion

(1993), Campbell et al. (2010), De Roon et al. (2012) all base their currency hedging strategies solely

on the risk management demand (covariance with the market equity portfolio).

The myopic buy-and-hold demand (III) arises because foreign exchange rates have jumps. As ex-

plained by Liu et al. (2003), unlike continuous fluctuations, jumps may occur before the investor has the

opportunity to adjust the portfolio. Jump risks, therefore, are similar to “illiquidity risk”: the investor

has to hold the asset until the jump has occurred. Observe that

Y ji ∝ ∇ŵjeiE[u(Xj(t))− u(Xj(t
−)|Ni(t)−Ni(t−) = 1].

E[u(Xj(t)) − u(Xj(t
−)|Ni(t) − Ni(t

−) = 1] is the expected utility gain at time t conditional on an

occurrence in jump component l at time t . Therefore (III) is the expected marginal utility increase

induced by jump component i from investing in one unit of risky assets at time t. The buy-and-hold

demand is “myopic” in the sense that it does not take into account the uncertainties of future jump

intensities. Note that in case of γj = 0, meaning that the investor is risk neutral, this term is zero.

The last term (IV) is tailored to account for the fact that the jumps are mutually exciting. Since the

asset prices Bji (t) and the state variables λ(t) are both driven by jumps Ni(t), foreign bond i can be used

to hedge future realizations of the state variables to hedge changes in λ(t). Intuitively, the mean-variance

demand and the myopic buy-and-hold demand exploit the risk-return trade-off of the risky assets, whereas

the intertemporal hedging demand is only concerned with state variable uncertainties.

All four components of the portfolio weights can be time-varying, but for different reasons. The risk

premium demand (I), risk management demand (II) and myopic buy-and-hold demand (III) depend on
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the state variables M j(t), λm(t), λi(t). Hence they change with the state variables instantaneously. The

intertemporal hedging demand (IV), on the other hand, depends not only on the spot values of the state

variables, but also on how the returns and the state variables evolve within the investment horizon. The

information of future outcomes is contained in Q(t), which is horizon dependent.

As one may expect, net currency weights predicted by special cases of our model are combinations

of the decomposed terms. In particular, if the currency returns are independent of equity returns, as

assumed by Solnik (1974), the risk management demand (II) of the currency is zero. If the economy is

free of jumps as in Sercu (1980), Adler and Dumas (1983), Black (1990), both the myopic buy-and-hold

demand (III) and the intertemporal hedging demand (IV) are zero. If the jumps are Poissonian with

constant jump intensities as in Torres (2012), the intertemporal hedging demand (IV) is zero.

4.2 Comparative statics

The risk premium demand, risk management demand and the buy-and-hold demand components of the

currency hedging strategy can be interpreted in a straightforward way by observing Equation (28). One

can immediately tell that the risk premium demand (I) increases when the investor can earn a higher

expected excess return from investing in the risky currency; the risk management demand (II) is negative

when there is positive correlation between other assets and the currency and positive otherwise; the buy-

and-hold demand (III) is negative when the currency jumps downward and positive if it jumps upward.

The intertemporal hedging demand (IV), however, depends on the excitation structure between the

equity jump component and the currency jump component. To see how (IV) is determined by the jump

excitation parameters, we conduct comparative statics analysis in Figure 1 and 2.

We consider three countries: a base country with the base currency, Country I, and Country II. We

make the simplified assumption that these three countries represent the global financial market. We

denote the currencies from these countries by the base currency, Currency I, and Currency II. Similarly,

we call the representative investors from these countries the base investor, Investor I and Investor II,

respectively.

Here, we only study the comparative statics of the optimal net weight on Currency I from the per-

spective of the base investor. The behaviour of the optimal net weight on Currency I for investor II has

a qualitatively similar pattern. To keep the analysis clean, we adopt a deterministic currency jump size

y1, y2 < 0 in this section.
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Figure 1: The intertemporal hedging demand (IV) of Currency I for the base investor as functions of elements

in the excitation matrix β. The base case parameters are η0 = 0.1, σm = 0.2, σd = 0.1, σe1 = σe2 = −0.1, v1 =

v2 = 0.05, jm = −0.03, jd = 0.1, αm = α1 = α2 = 35, β = (15, 6, 6; 6, 8, 0; 6, 0, 8), T = 1, κ1 = κ2 = 0.02, y1 =

y2 = −2%, γ0 = γ1 = γ2 = 3, λm = λ1 = 2.
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Figure 2: The intertemporal hedging demand (IV) of Currency I for the investor from the base country as func-

tions of the mean reversion rate αm (top left), equity jump risk premium κ0 (top right), risk aversion γ0 (bottom

left) and investment horizon T (bottom right). The base case parameters are η0 = 0.1, σm = 0.2, σd = 0.1, σe1 =

σe2 = −0.1, v1 = v2 = 0.05, jm = −0.03, jd = 0.1, αm = α1 = α2 = 35, β = (15, 6, 6; 6, 8, 0; 6, 0, 8), T =

1, κ1 = κ2 = 0.02, y1 = y2 = −2%, γ0 = γ1 = γ2 = 3, λm = λ1 = 2.

We plot the intertemporal hedging demand (IV) of Currency I for the base investor as functions

of elements in the excitation matrix β in Figure 1. The figure shows that increasing any element of

the excitation matrix β leads to increasing hedging demand (IV) of Currency I in the base investor’s

portfolio, whether it be the self excitor of the market equity, βm,m (top left), the equity-currency excitor,

βm,1 (bottom left), the currency-equtiy excitor, β1,m (top right), or the self excitor of Currency I, β1,1

(bottom right).

Figure 2 plots the intertemporal hedging demand (IV) of Currency I for the base investor as functions

of the mean reversion rate αm (top left), equity jump risk premium κ0 (top right),6 domestic risk aversion

γ0 (bottom left) and the investment horizon T (bottom right). Larger jump risk premium and longer

investment horizon result in increasing hedging demand for Currency I. On the contrary, faster mean

6For every κ0, we maintain that κ0 = κ1 = κ2.
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reversion rate decreases the hedging demand for Currency I for the base investor. Interestingly, increasing

the risk aversion first increases then decreases the base investor’s hedging demand.

When y1 < 0, from the perspective of the base investor, the foreign currency jumps downward,

opposite to the jumps in equity and currency jump intensities. Currency I, therefore, can be used as a

static hedge against the state variables. As a result, the base investor has a positive hedging demand for

Currency I. The larger the hedging potential the risky currency is against the state variables, the larger

hedging demand investors have.

Larger excitation and slower mean reversion imply that the currency jump intensity process λ1(t) is

more volatile. As one may expect, the more uncertainty there is in the state variable, the larger hedging

incentive investors have. Loosely speaking, as the equity jump risk premium increases, more weight is

assigned to the market equity, which leads to more jump risks to be hedged. Similarly, longer investment

horizon leads to increased sensitivity of indirect utility to state variables. In short, hedging demand rises

when there are increasing uncertainties in investor’s indirect utility.

The effect of increasing the risk aversion, however, is not clear. On one hand, increasing the risk

aversion decreases the demand for Currency I in general, implying a smaller amount to be hedged,

thereby decreasing the hedging demand. On the other hand, a more risk averse investor is more inclined

to hedge the changes in the state variable, and may therefore have a larger hedging demand. The final

result depends on which effect is larger. Figure 2 shows that the effect of increasing risk aversion is not

monotone: it first increases the jump risk demand and then reduces it.

An interesting phenomenon is that while the currency weight ŵjei does not display market timing, its

components do. Figure 3, 4 plot the volatility-scaled four components of the weight on Currency I in the

base investor’s portfolio as functions of the equity jump intensity λm and the currency jump intensity

λ1, respectively.
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Figure 3: Comparative statics of the components (I, II, III, IV) of Currency I for the base investor as functions

of the current equity jump intensity λm. The upper left panel plots the risk premium demand I, the upper right

panel plots the risk management demand II, the bottom left panel plots the buy-and-hold demand III, and bottom

right panel plots the hedging demand IV. The base case parameters are η0 = 0.2, σm = 0.2, σd = 0.1, σe1 =

σe2 = −0.1, v1 = v2 = 0.05, jm = −0.03, jd = 0.02, αm = α1 = α2 = 35, β = (15, 6, 6; 6, 8, 0; 6, 0, 8), T =

1, κ0 = κ1 = κ2 = 0.02, y1 = y2 = −2%, γ = 3, λm = λ1 = 2.

Figure 3 plots the components of the optimal weight on Currency I for an investor from the base

country as functions of the current equity jump intensity λm. The figure shows that the risk premium

demand I (upper left panel) increases with the equity jump intensity. Since the expected excess return is

proportional to the jump intensity, larger jump intensity increases the compensation for the base investor.

It is not surprising that given the negative covariance with other assets, the risk management component

II (upper right panel) decreases with the equity jump intensity. Larger equity intensity increases the

covariance, resulting in more negative risk management demand. Both the myopic buy-and-hold demand

III (bottom left) and the intertemporal hedging demand IV (bottom right) approach zero as the equity

jump intensity increases. Increasing the equity jump intensity increases the currency volatility bi but

leaves the myopic demand and intertemporal hedging demand unchanged. Therefore after volatility
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scaling, both demand components approach zero as volatility increases.
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Figure 4: Comparative statics of the components (I, II, III, IV) of the foreign currency demand for the domestic

investor as functions of the current currency jump intensity λs. The upper left panel plots the speculation demand

I, the upper right panel plots the risk management demand II, the bottom left panel plots buy-and-hold demand

III, and the bottom right panel plots the hedging demand IV. The base case parameters are η0 = 0.2, σm =

0.2, σd = 0.1, σe1 = σe2 = −0.1, v1 = v2 = 0.05, jm = −0.03, jd = 0.02, αm = α1 = α2 = 35, β =

(15, 6, 6; 6, 8, 0; 6, 0, 8), T = 1, κ0 = κ1 = κ2 = 0.02, y1 = y2 = −2%, γ = 3, λm = λ1 = 2.

Figure 4 plots the components of the optimal weight on Currency I for the base investor as functions

of the current currency jump intensity λ1. We see opposite patterns to Figure 3. Both the risk premium

demand I (upper left) and the risk management demand II (upper right) converge to zero as currency

jump intensity increases, because larger currency jump intensity leads to larger currency volatility but

does not affect the expected excess return or covariance with other assets. Both buy-and-hold demand

III (bottom left) and intertemporal hedging demand IV (bottom right) increase in absolute value as

currency jump intensity rises. This is because increasing currency jump intensity magnifies the currency

jump effect on portfolio weight.
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5 Market equilibrium

This section derives the equilibrium currency hedging strategies. Previous to this section, we work with

the net currency weight ŵjei . The raw currency weights are given by the net weights plus the implicit

currency investment in the currency-hedged assets. In order to calculate the equilibrium currency hedging

strategy, one needs to get to the raw currency weights. In this section, we impose market clearing

conditions in order to see how much currency risks investors are exposed to by investing in the global

equity and the global derivative portfolio.

5.1 Equilibrium condition

Denote country i’s wealth as a proportion to the world wealth as fi = Xj
i /M

j , where j can be any

currency. Following Wang (1996) and Bongaerts, De Jong, and Driessen (2011), Definition 1 defines the

market equilibrium as the condition that the security markets clear.

Definition 1 (Market Equilibrium). Market equilibrium consists of the asset price processes (M i(t), Di(t))

and the trading strategies (wi) for i = 0, . . . , n, such that the investors’ expected utilities are maximized

wi = arg supE0

[Xi(T )1−γi

1− γi

]
,

subject to their respective wealth dynamics:

dXi(t)

Xi(t−)
=wim

dM i(t)

M i(t−)
+ wid

dDi(t)

Di(t−)
+

n∑
l=0

wiel
dBil (t)

Bil (t
−)
, i = 0, . . . , n. (29)

and the security markets clear



∑n
i=0 fi = 1,∑n
i=0 hi = 1,∑n
i=0 fiw

i
d = 0,∑n

i=0 fiw
i
el

= 0, l = 0, . . . , n.

(30)

The first equation implies that the sum of the market capitalization of each country equals the total

market capitalization. The second condition says that the total capital in the market comes from the

wealth of nations. The third and fourth equations impose that the net supply of the equity derivatives and

bonds should be zero, meaning that the gross lending in the equity derivatives as well as each currency

should be equal to the gross borrowing.

32



The security market clearing conditions imply that the wealth distribution (fi), country’s market

capitalization (hi) and each country’s share in the derivative portfolio (ki) need to be consistent with the

return dynamics of equities and exchange rates.

In Section 3, we have derived the optimal asset allocation on currency-hedged assets. The following

lemma shows how to compute the weights on the raw assets from the weights on the hedged assets.

Lemma 1. The portfolio weights on the currency-unhedged assets are given by

wjm = ŵjm, ŵjo = ŵjo, j = 0, . . . , n (31)

wjei = ŵjei − hiŵ
j
m − kiŵ

j
d, i, j = 1, . . . , n, i 6= j, (32)

wjej = 1 + ŵjej − hjŵ
j
m − kjŵ

j
d, i, j = 1, . . . , n, (33)

wje0 = −
( n∑
i=1

ŵjei + h0ŵ
j
m + k0ŵ

j
d

)
, j = 1, . . . , n. (34)

Therefore we can equivalently construct the market clearing conditions using the weights on the

currency-hedged assets.

Theorem 2. For fi, hi ∈ [0, 1], Equation (30) is equivalent to



∑n
i=0 fi = 1,∑n
i=0 hi = 1,∑n
i=0 fiŵ

i
m = 1,∑n

i=0 fiŵ
i
d = 0,∑n

i=0 ŵ
i
ejfi − hj + fj = 0, ∀j = 1, . . . , n.

(35)

5.2 Equilibrium currency hedging

In Black (1990), the equilibrium hedging strategy of currency i for investor j is defined as the negative

of the investment on currency i per unit of the global equity index invested,

Hj
i := −

wjei
wjm

. (36)

In terms of weights on the currency-hedged assets, Equation (36) can be expressed as

Hj
i = −

ŵjei − (hiŵ
j
m + kiŵ

j
d)

ŵjm
. (37)

Proposition 4 (Black (1990)). If all prices follow geometric Brownian motion processes and all investors
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have the same risk aversion coefficient γ, then the equilibrium hedging strategy of currency i for any

investor j, j 6= i is given by

Hj
i -Black = fi(1− 1/γ), ∀j 6= i. (38)

Equation (56) is the well-known universal hedging formula derived by Black (1990). The two key

implications are: (1) In equilibrium, every investor hedges the same amount of any risky currency i

regardless of their home currencies j; (2) The universal currency hedging ratio of currency i only depends

on two variables: the coefficient of relative risk aversion and the total wealth held by investors in country

i. This means that the currency’s expected excess return, volatility or correlation with the equity market

do not have a direct impact on the hedging ratio of the currency, as long as the wealth holdings and risk

attitude are fixed.

6 Safe haven vs. investment currencies

In Ranaldo and Söderlind (2010), a safe haven currency is a currency that offers hedging benefits on

average. For instance, Campbell et al. (2010) show that Swiss franc and Euro are negatively related to

equity. However, the correlations between currencies and the equity market are very unstable and may

switch between positive and negative values periodically. Even worse, during the 2007-2009 financial

crisis, as Kohler (2010) notes, “a large number of currencies that were not at the center of the turmoil

depreciated, even those which were regarded as safe haven currencies preceding the crisis”. For example,

the 2008 financial crisis emerged as an important case study where safe haven effects went against typical

patterns partially in contrast with the results of Ranaldo and Söderlind (2010).

Therefore we focus on the alternative definition of safe haven currencies in Ranaldo and Söderlind

(2010). A currency is considered a safe haven if it gives hedging benefits in times of stress.

We can intuitively distinguish a safe haven currency and an investment currency in our framework.

A safe haven currency provides a safe haven to investors during a recession. Therefore a safe haven

currency should be relatively immune to capital market turmoil. In our model, the excitor βm,i measures

how large a jump occurrence in the equity market Nm raises the intensity of the currency jump component

λi. A safe haven currency, therefore, should have a relatively smaller βm,i. An investment currency, on

the contrary, is like the mirror image of the safe haven currencies, and is characterized by a relatively

larger βm,i. As a consequence, a safe haven currency is not as prone to the equity market downturns as

investment currencies.

Whether a currency is of the “safe haven” type or “investment” type has important implication

in determining the optimal currency exposure. Observe that βm,i plays a different role from βi,m in

determining the currency demand. Recall that the intertemporal hedging demand (IV) is a function of
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βi, in which βi,m and βm,i are not weighted symmetrically. Therefore imagine a safe haven currency and

an investment currency with identical risk profile (including expected return, covariance, jump size, jump

intensity, etc.) except that the safe haven currency has smaller equity-currency excitor βm,i, the demand

for these two risky currencies for a foreign investor is in general different.

6.1 Equilibrium net currency weight

In this section, we are going to illustrate investors’ preferences towards safe haven currency numerically.

Similar to the numerical studies in Section 4.2, we consider a three-currency scenario including a base

currency.

Figure 5 and Figure 6 plot the equilibrium net Currency I weight for the base investor, ŵ0
e1 when the

contagion structure between the equity and Currency I changes, using the first Equation of (25). We fix

the first and third row of the excitation matrix, in order that the equity-currency contagion structure for

Currency II does not vary. In Figure 5, we let the equity-currency excitor βm,1 increase while finding the

corresponding currency self excitor β1,1 that delivers the same expected jump intensity E[λ1]. Conversely

in Figure 6, we let the currency-equity excitor β1,m increase while finding the corresponding currency self

excitor βm,m that delivers the same expected equity jump intensity E[λm]. The equilibrium net weight

on Currency I is plotted in the solid curves and that on Currency II is depicted in dotted curves.

Note that in both Figure 5 and 6, the two non-base currencies have the same risk profile (volatility,

covariance with the equity, jump amplitude, expected jump intensity) except the excitation structure.

Figure 5 shows what happens when Currency I moves from a safe haven currency to an investment

currency. When βm,1 is small, the currency has the safe haven characteristic and is stable during market

downturns. As βm,1 increases, the currency becomes more liable to depreciate during capital market

turmoil. We observe from the figure that the base investor demands more currency exposure when the

currency is of the safe haven type. In Figure 6, even though the dependence between equity and Currency

I increases all the same (just like Figure5), the optimal net currency weight displays an opposite pattern

to Figure 5. The figure shows that when it comes to portfolio choices, the direction of excitation matters.

In particular, a currency is only safe haven when the equity-currency excitor is small.
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Figure 5: Equilibrium net weight on Currency I (solid line) and II (dotted line) of the base investor as a function

of the equity-currency excitor βm,1. The equilibrium net currency weight for the base investor is computed using

Equation (25). The excitation matrix is β = (15, 6, 6;βm,1, β1,1, 0; 6, 0, 8). We let βm,1 increase and find the

corresponding β1,1 such that the expected equity and currency jump intensities do not vary with the excitation

matrix. All the other parameters are kept constant with η0 = 0.3, σe1 = σe2 = −0.1, v1 = v2 = 0.05, αm = α1 =

α2 = 35, T = 1, κ0 = κ1 = κ2 = 0.02, y1 = y2 = −2%, γ0 = γ1 = γ2 = 3.
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Figure 6: Equilibrium net weight on Currency I (solid line) and II (dotted line) of the base investor as a function

of the currency-equity excitor β1,m. The equilibrium net currency weight for the base investor is computed using

Equation (25). The excitation matrix is β = (βm,m, β1,m, 6; 6, 8, 0; 6, 0, 8). We let β1,m increase and find the

corresponding β1,1 such that the expected equity and currency jump intensities do not vary with the excitation

matrix. All the other parameters are kept constant with η0 = 0.3, σe1 = σe2 = −0.1, v1 = v2 = 0.05, αm = α1 =

α2 = 35, T = 1, κ0 = κ1 = κ2 = 0.02, y1 = y2 = −2%, γ0 = γ1 = γ2 = 3.

Jump excitation structure determines the intertemporal hedging demand for currencies. The x-axis in

Figure 5 starts with 0, indicating that an occurrence in the equity jump component does not increase the

probability of a depreciation of Currency I. In comparison, at the end point of the x-axis, an occurrence

in the equity jump component raises the jump intensity λ1(t) by 6. As βm,1 increases, the impact of a

price plunge in the equity market on the value of Currency I increases, making Currency I less safe haven.

When Currency I moves away from a safe haven currency and towards an investment currency, the base

investor decreases the net weight on Currency I and slightly increases that on the other risky currency,

Currency II.

6.2 Equilibrium currency hedging strategy

In this section we study what happens to the equilibrium currency hedging strategy given in Equation

(37) as the equity-currency excitor increases.

For a cleaner illustration of the distinction between the equilibrium currency hedging prediction of

our model and that of Black (1990), every time we increase the equity-currency excitor, we keep the risk

37



aversion parameter γ and the wealth distribution vector (fi) fixed, such that the Black (1990)’s prediction

does not vary with the equity-currency excitor. To restore equilibrium, however, the global equity index

and derivative portfolio are allowed to be endogenous. The detailed algorithm of finding and restoring

the market equilibrium can be found in Appendix B.

Figure 7 compares the equilibrium currency hedging ratio of our model to the universal hedging

ratio (Equation (56)) of Black (1990). The left panel plots the model prediction of the hedging ratio of

currency I in equilibrium when Currency I moves from a safe haven currency to an investment currency.

The hedging ratio of Currency I for the base investor is plotted in the solid curve, while that for Investor II

is plotted in the dotted curve. The figure is produced in the same way as Figure 5 but with the dependent

variable being the hedging ratio of Currency I. We see that as Currency I becomes more prone to equity

market downturns, both investors from the base country and country II hedge a larger proportion of the

risk of Currency I.

The right panel plots the currency hedging prediction calculated using the Black hedging formula

(56). We see that the equilibrium currency hedging in the Black (1990) model does not change when

Currency I is no longer safe haven. Notice that in the right panel, one curve is visible because the base

investor and Investor II have the same hedging ratio, namely, the universal hedging ratio.
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Figure 7: Equilibrium hedging ratio of Currency I when Currency I moves from a safe haven currency to an

investment currency. The left panel plots the hedging ratio calculated by Equation (37). The hedging ratio for the

base investor is plotted in the solid curve, while that for Investor II is plotted in the dotted curve. The right panel

plots Black’s universal hedging ratio for Currency I (see Equation (56)). Here, one curve is visible because the base

investor and Investor II have the same hedging ratio. The excitation matrix is β = (15, 6, 6;βm,1, β1,1, 0; 6, 0, 8).

We let βm,1 increase and find the corresponding β1,1 such that the expected equity and currency jump intensities

do not vary with the excitation matrix. The following parameters are kept constant with η0 = 0.3, σe1 = σe2 =

−0.1, v1 = v2 = 0.05, αm = α1 = α2 = 35, T = 1, κ0 = κ1 = κ2 = 0.02, y1 = y2 = −2%, γ0 = γ1 = γ2 = 3.
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Figure 8: Equilibrium hedging ratio of Currency I as a function of the currency-equity excitor β1,m. The left

panel plots the hedging ratio calculated by Equation (37). The hedging ratio for the base investor is plotted in

the solid curve, while that for Investor II is plotted in the dotted curve. The right panel plots Black’s universal

hedging ratio for Currency I (see Equation (56)). Here, one curve is visible because the base investor and Investor

II have the same hedging ratio. The excitation matrix is β = (15, 6, 6;βm,1, β1,1, 0; 6, 0, 8). We let βm,1 increase

and find the corresponding β1,1 such that the expected equity and currency jump intensities do not vary with

the excitation matrix. The following parameters are kept constant with η0 = 0.3, σe1 = σe2 = −0.1, v1 = v2 =

0.05, αm = α1 = α2 = 35, T = 1, κ0 = κ1 = κ2 = 0.02, y1 = y2 = −2%, γ0 = γ1 = γ2 = 3.

Increasing the currency-equity excitor, while also increases the equity currency dependence, leads to

opposite patterns, as shown in Figure 6 and 8. Still, we see that increasing the currency-equity beta does

not have an impact on the Black’s hedging strategy.

One may argue that in Figure 7 and 8, the Black’s equilibrium currency hedging ratio plotted in

the right panels are not optimal should investors fit the asset returns in a geometric Brownian motion

model. The question arises that if in an economy of Black (1990), where the asset returns, investors’

preferences, and wealth, capital distributions form an equilibrium market, will increasing the linear

correlation coefficient between the market equity and currencies, deliver the same safe haven currency

effect. We therefore redo the analysis in a Black model.

Indeed, the phenomenon that investors hedge more investment currency risks than safe haven currency

risks cannot be replicated by linear correlation in a geometric Brownian motion model. Figure 9 plots the

hedging ratio of Currency I for every investor as a function of the linear correlation between Currency I

and the currency-hedged market equity, predicted by the equilibrium model of Black (1990). Similar to

Figure 7, we let the risk aversion to be the same across all investors, in which case each investor invests

100% in the market equity, however the correlation between currency and equity changes. As a result,

all investors hedge the same amount of currency risks, regardless of the risk profile of the home currency
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or the risky currencies.
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Figure 9: Equilibrium hedging ratio of Currency I as a function of the linear correlation coefficient between the

market equity and Currency I. All investors have the same hedging ratio of Currency I, hence one curve. We

start with an initial equilibrium, then change the correlation and restore the equilibrium by finding a consistent

market equity. The construction of the Black model is given in Appendix C.

Note that Figure 9 is produced differently from the right panels of Figure 7 and 8. In Figure 7 and 8,

the equilibrium currency hedging ratio is computed using the Black’s hedging formula, fi(1−1/γ), where

the wealth distributor (fi) are found such that the equity-currency contagious market is in equilibrium.

It is not equal to the definition of the currency hedging, −w
j
ei

wjm
, which is plotted in the left panels of Figure

7 and8. In Figure 9, by contrast, the hedging ratio is calculated using the definition Hj
i = −w

j
ei

wjm
. In

Black’s model, when the market is in equilibrium, the currency hedging ratio can be shown to be equal to

fi(1− 1/γ). Here, the wealth distributor f is consistent with the equilibrium portfolio weights, wjei , w
j
m,

in the sense that f , wjei , w
j
m satisfy the equilibrium condition (57). The details on the construction of the

Black model and how Figure 9 is produced can be found in Appendix C.

In Figure 7 and 8, the asset universe consists of country-specific stocks, call options and currencies.

In Appendix D, we show that if we use put options and straddles instead of call options, the patterns are

qualitatively similar.

All else equal, investors prefer safe haven currencies to investment currencies regardless of their home

currencies. The latter is more likely to go through a substantial depreciation once the equity market
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experiences a price plunge. Investors with exposure to investment currencies have to risk the possibly

that the currency investment will go down during financial crises. Exposure to safe haven currencies,

however, can act as a shield to the equity investment: when the equity is in turmoil, the value of the

currency investment typically remains stable.

7 Conclusion

Inspired by the empirical findings that there exists risk spillover from the equity market to the currency

market, we revisit the classic equilibrium currency hedging problem established by Solnik (1974) and

Black (1990) under the context of equity-currency contagion. We postulate a mutually exciting jump

diffusion model to jointly model the equity returns and currency returns. Our model is consistent with

the extant literature in that (1) the currency returns are subjected to country-specific risk factors as well

as global risk factors, (2) currency returns are subjected, but not limited, to equity risks. On top of these

features, we further allow for cross excitation between the equity jump component and the currency jump

components.

We assume that the global market is integrated and free of arbitrage opportunities, in which case the

currency returns is equal to the difference in the returns of the pricing kernels of the two countries. We first

solve analytically the asset allocation problem for every representative investor in terms of the currency-

hedged assets. We show that the optimal net currency weights can be decomposed into four components:

(1) the risk premium demand that earns the expected excess returns by taking currency risks; (2) the risk

management demand that exploits the diversification benefits embedded in the instantaneous covariance

structure with other assets in the portfolio; (3) the myopic buy-and-hold demand which is induced by the

discontinuities (jumps) in the returns; and (4) the intertemporal hedging demand that hedges the state

variable risks. The intertemporal hedging demand is a result of the mutually exciting nature of the jump

components. Loosely speaking, the intertemporal hedging demand for currencies increases when there is

more uncertainty in the state variables and when there is more jump risk to hedge.

Next we impose security market clearing conditions to derive the equilibrium currency hedging strat-

egy, defined as the negative of the investment on a risky currency per unit of global equity index invested.

Compared with the classic equilibrium currency hedging ratio of Black (1990), our prediction has two

distinctive features: (1) The universal hedging ratio no longer holds: investors with different domestic

currencies will in general have different currency hedging ratios; (2) The dependence structure between

the equity market and the currency market does matter: Everything else equal, investors hedge more

investment currency risk than the safe haven currency risk, whereas investors can be indifferent in Black

(1990).
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Appendix

A Proofs

Proof for Proposition 1. Define

Xj(t) = logSj(t).

ψ(u) = e−rj(τ−t)EQj [exp(uXj(τ))|Ft].

Under the risk neutral measure Qj of country j, the dynamics of Xj(t) follows

dXj(t) =
(
rj −

1

2
σ2
sjλm(t)

)
dt+ σsj dW

Qj
j (t) + log(1 + jsj )( dNQj

m (t)− (1 + κj)λm(t) dt).

The jump process N
Qj
m (t) has intensity (1+κj)λm(t) under the risk neutral measure of country j. Duffie,

Pan, and Singleton (2000) show that the price of a call option Cj(t) is given by

Cj(t) = G1,−1(− logKj)−KjG0,−1(− logKj)

where Ga,b(y) denotes the price of a security that pays eaXj(T ) at time T in case of bXj(t) ≤ y. The

Fourier transform Ga,b(·) is defined as

Ga,b(u) :=

∫ +∞

−∞
eizydGa,b(y)

=EQjt [exp((a+ iub)Xj(T )]

=ψt(a+ iub)

Employ the Duffie et al. (2000) transform analysis, define

K0 =

 0

αmλ∞

 , K1 =

0 − 1
2σ

2
sj − jsj (1 + κj)

0 −αm

 ,

(H1)11 = (0, σ2
sj )
′, H0 = 0,

l0 = 0, l1 = (0, 1 + κj)
′, θ(c) = exp

(
jsjc1 + c2βm,m

)
.

It holds that

ψt(u) = Sj(t)
u exp(P +Qλm(t)) (39)
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where P = P(t),Q = Q(t),

d

dt
Q(t) =

(1

2
σ2
sj + jsi(1 + κj)

)
u+ αmQ(t)− 1

2
u2σ2

sj − (1 + κj)
(

(1 + jsj )
ueβm,mQ(t) − 1

)
, Q(τ) = 0

d

dt
P(t) =− αmλm,∞Q(t), P(τ) = 0.

Ga,b(y) can be recovered by applying the inverse Fourier transform formula

Ga,b(y) =
1

2
ψt(a)− 1

π

∫ ∞
0

Im[e−iuyψt(a+ iub)]

u
du,

Proof of Proposition 2. Since the market is incomplete, we employ the stochastic control method to solve

the portfolio optimization problem. We can rewrite the budget constraint (16), replacing the portfolio

weight on stocks and stock options by the portfolio exposure to equity risk factors, while keeping the

portfolio weight on the foreign currency:

dXj(t)

Xj(t−)
=rj(t) dt+ θj′w

(√
λm dW +

1

σm
ηjh
′σs(LL

′)θjwλm dt
)

+ θjn( dNm − (1 + κj)λm dt)

+

n∑
i=1

ŵjei(λi dt− vi
√
λi dZi + yi dNi − E[yi]λi dt).

Bellman’s optimality principle implies that

0 = sup
ŵj
AJ,

where A denotes the infinitesimal generator operator. The Hamilton-Jacobi-Bellman (HJB) equation

reads

0 = sup
θjw,θ

j
n,ŵ

j
ei

{
Jt +

(
rj + ηjh

′σs(LL
′)θjwλm/σm − θjn(1 + κj)λm −

n∑
i=1

ŵjeiE[yi]λi

)
Jxx+ αm(λm,∞ − λm)Jλm

+

n∑
i=1

αi(λi,∞ − λi)Jλi +
1

2

(
θj′wLL

′θjwλm +

n∑
i=1

(ŵjeivi)
2λi

)
Jxxx

2

+ λm

(
J
(
x(1 + θjn),λ+ βm

)
− J

)
+

n∑
i=1

λiE
[
J
(
xj(1 + ŵeiyi),λ+ βi

)
− J

]}
, (40)

We use Jt, Jx, Jλm , Jλi to denote the partial derivatives of J with respect to t, x, λm, λi and similarly for

the higher order derivatives.

We take derivatives of J(t, x, λ) with respect to its arguments, substitute into the HJB equation in

Equation (40), and differentiate with respect to the portfolio risk exposure θjw, θ
j
n, and the currency
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weights ŵjei , i = 1, . . . , n, to obtain the following first-order conditions:

0 =
1

σm
ηjh
′σs(LL

′)λm − γj(LL′)θjwλm, (41)

0 = −(1 + κj)λm + λme
Q′βm(1 + θjn)−γj , (42)

0 = −E[yi]λi − γjŵjeiv
2
i λi + λie

Q′βiE[(1 + ŵjeiyi)
−γjyi]. (43)

which results in Equation (19).

It should be noted that θjw, θ
j
n, ŵ

j
ei are independent of Xt, λ(t) and are functions ofQ. We now proceed

to derive the ordinary differential equations for the time-varying coefficients P (t) and Q(t), under which

the conjectured form (18) for the indirect utility function J indeed satisfies the HJB equation (40). For

this, we substitute (18), (41) and (42) into the HJB equation and obtain,

0 =Ṗ + Q̇′λ+ (1− γj)
(
rj(t) + ηjh

′σs(LL
′)θjwλm/σm − (1 + κj)θ

j
nλm −

n∑
i=1

ŵjeiE[yi]λi

)
+ αm(λm,∞ − λm)Qm

+

n∑
i=1

αi(λi,∞ − λi)Qi −
1

2
γj(1− γj)(θj′wLL′θjwλm +

n∑
i=1

(ŵjeivi)
2λi)

+ λm

(
(1 + θn)1−γ exp(Q′βm)− 1

)
+

n∑
i=1

λi

(
E[(1 + ŵeiyi)

1−γj ] exp(Q′βi)− 1
)
,

where Ṗ , Q̇ denote the derivative of P (t), Q(t) with respect to time t. The left-hand side of this expression

is an affine function in λm, λi. For this expression to hold for all λm, λi, the constant term and the linear

coefficient of λm, λi on the left-hand side must be set equal to zero separately, which leads to the ordinary

differential equation for Q(t) given in (21).

Proof of Theorem 1. By replacing the country-specific equities with a global market equity, Equation

(19) can be written as



ŵjm

ŵjo0
...

ŵjon


=



h0σs0 σo0 . . . 0

...
...

. . .
...

hnσsn 0 . . . σon

jm jo0 . . . jon



−1

θjw0
−
∑n
i=1 ŵ

j
eiσei

...

θjwn −
∑n
i=1 ŵ

j
eiσei

θjn −
∑n
i=1 ŵ

j
ei ĵ

j
ei


. (44)

Notice that the matrix to be inverted is of full column rank. Therefore the equity weights vector

(wjm, w
j
o0, . . . , w

j
on) exists and is unique.

Next we show that all investors, regardless of their home currencies, will invest in the same global

derivative portfolio. Denote investor j’s position on the currency-hedged global equity index by ŵjm. By

multiplying each country equity’s weight in the market equity index, hiŵ
j
m therefore gives the weight on
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the country equities in investor j’s portfolio, i.e.,

hiŵ
j
m = ŵjsi .

Define σo as an (n + 1) × (n + 1) diagonal matrix with σoi on the diagonal. Further define σe as an

n × (n + 1) matrix with with the [i, j]th element containing currency i’s exposure to country j’s equity

Brownian motion. The first equation of (17) implies that

σ′shŵ
j
m + σoŵ

j
o = θjw − σ′eŵj

e. (45)

Note that σe can be written as

σ′e =

(
η0−η1
σm

σ′sh . . . η0−ηn
σm

σ′eh

)
.

In addition, Proposition 2 shows that

θjw =
ηj

σmγj
σ′sh.

Therefore we have

σ′eŵ
j
e = σ′sh

(
η0−η1
σm

. . . η0−ηn
σm

)
ŵj
e

:= (cŵj
e)σ
′
sh,

where c denote the 1× n vector

(
η0−η1
σm

. . . η0−ηn
σm

)
. Equation (45) becomes

(
ŵjm −

ηi
σmγj

+ cŵj
e

)
σ′sh+ σoŵ

j
o = 0,

from which we get

ŵj
o =

( ηi
σmγj

− ŵjm − cŵj
e

)
σ−1o σ′sh.

Notice that
(

ηi
σmγj

−wjm−cŵj
e

)
is a single number, and σ−1o σ′sh is an (n+1)×1 vector, and is independent

of the investor identity j. Therefore all investors will invest in the same global derivative portfolio.

Proof for Lemma 1. The weights on the unhedged equity and equity derivatives should be equal to the

weights on the hedged ones,

wjm = ŵjm, wjd = ŵjd.

The raw weight on currency i, ŵjei should be the net currency weight ŵjej plus the currency position
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embedded in the hedged assets,

wjei = ŵjei − hiŵ
j
m − kiŵ

j
d, j = 1, . . . , n.

The budget constraint (24) can be written as

dXj(t)

Xj(t−)
=ŵjm

dM̂ j(t)

M̂ j
t−

+ ŵjd
dD̂j(t)

D̂j
t−

+

n∑
i=1

ŵjei
dB̂ji (t)

B̂ji (t
−)

+
(

1− ŵjm − ŵ
j
d −

n∑
i=1

ŵjei

) dB̂j0(t)

B̂j0

=ŵjm
dM j(t)

M j
t−

+ ŵjd
dDj(t)

Dj
t−

+

n\j∑
i=1

(
ŵjei − hiŵ

j
m − kiŵ

j
d

) dBji (t)

Bji (t
−)
−
(
h0ŵ

j
m + k0ŵ

j
d +

n∑
i=1

ŵjei

) dBj(t)

Bj

+
(

1 + ŵjej − hjŵ
j
m − kjŵ

j
d

) dBj(t)

Bj(t)
.

Therefore,

wjm = ŵjm, ŵjd = ŵjd, j = 0, . . . , n,

wjei = ŵji − hiŵ
j
m − kiŵjo, wjej = 1 + ŵjej − hjŵ

j
m − kjŵ

j
d, i, j = 1, . . . , n, i 6= j,

wje0 = −
( n∑
i=1

ŵjei + h0ŵ
j
m + k0ŵ

j
d

)
, j = 1, . . . , n.

Proof for Theorem 2. The third equation is obtained by multiplying the third equation in (30) by hj on

both sides. And since wimhj = wisj , we get
∑n
i=0 fiŵ

i
m = 1. The other equations can be easily verified

by replacing the weights on the unhedged assets by the hedged counterparts using Lemma 1.

Proof for Proposition 4. See Black (1990).

B Numerical equilibrium calculation

In this section, we explain the numerical algorithms we use for the equilibrium calculations. In particular,

the procedure to restore equilibrium when the equity-currency excitor changes is different from that of

finding an equilibrium for exogenous asset return generating process. To produce Figure 7 and Figure 8,

we use the latter to find an initial equilibrium, taking the equity and exchange rate dynamics, investors’

preferences as given and looking for the equilibrium wealth distributor f and market capitalization ratio

h. When we change the equity-currency excitor or the currency -equity excitor, we use the former to

restore equilibrium, taking the wealth distributor f and exchange rate dynamics as given and looking for

the equilibrium market equity process.
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B.1 Algorithm to find an initial equilibrium

Let the equity returns and exchange rate dynamics be given. Now we are going to find a wealth distributor

f , which tells how much wealth each country is holding, and a market capital distributor h, which tells

how much assets each country is holding. We use the following algorithm to find an initial equilibrium,

where Figure 7 and Figure 8 start with.

1. Solve for the optimal net currency holding ŵjei for each investor j = 0, . . . , n, and for each currency

i = 1, . . . , n, using Proposition 2.

2. According to the security market clearing conditions given by (35), the clearing of the bonds market

implies that

h− = ŵ0
ef + f−, (46)

where h− is a vector containing h1, . . . , hn; f− is a vector containing f1, . . . , fn; ŵe is an n×(n+1)

matrix defined as

ŵe =


ŵe1 . . . ŵne1

...
...

...

ŵen . . . ŵnen

 .

Here, since h = (1−ι′h−,h−)′, f = (1−ι′f−,f−)′, we see that the global equity index composition

vector h can be expressed as a function of the wealth distribution vector f and the net currency

holdings.

3. According to the third and forth equations of (35), the equity and derivative market clearing

condition implies that


σm =

∑n
j=0 fjθ

j
m +

∑n
i=1 σei(fi − hi),

jm =
∑n
j=0(1 + jej )fjθ

j
n +

∑n
i=1 jei(fi − hi).

(47)

4. But the global equity index found in the last step need to be a weighted average of countries’

equities with the weights h, therefore

σ2
m = h′Σh, jjm =

n∑
i=0

hijsi(1 + jej ), (48)
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5. Substitute σm and jm on the LHS of Equation (48) by Equation (47) in Step 3 and get

( n∑
j=0

fjθ
j
m +

n∑
i=1

σei(fi − hi)
)2

= h′Σh, (49)

n∑
j=0

(1 + jej )fjθ
j
n +

n∑
i=1

jei(fi − hi) =

n∑
i=0

hijsi(1 + jej ), (50)

with h a function of f given by Equation (46). We hence arrive at two equations of the vector f

(which has n−1 unknown elements). With carefully specified exogenous parameters, one can easily

find an n−dimensional simplex f such that the above equations hold. Note that in case of n ≥ 2,

the solution is not necessarily unique.

6. Once a solution f to Equation (49) and (50) is found, one can calculate the corresponding h using

Equation (46).

B.2 Algorithm to restore equilibrium

Let the international market be in equilibrium. Now we independently change the equity-currency excitor

βm,i. The new equilibrium is found as follows (variables that vary with βm,i are denoted by a bar, .̄)

1. Solve for the new optimal net currency holdings ¯̂wjei for each investor j = 0, . . . , n, and for each

currency i = 1, . . . , n, using Proposition 3.

2. For fixed f , the bonds market clearing condition implies that

h̄− = ¯̂wef + f−, (51)

where f− denotes the vector (f1, . . . , fn), and similar for h̄−.

3. From the perspective of the base investor, the equity and derivative market clearing condition

implies that


σ̄m =

∑n
j=0 fjθ

j
m +

∑n
i=1 σei(fi − h̄i),

j̄jm =
∑n
j=0(1 + jej )fjθ

j
n +

∑n
i=1 jei(fi − h̄i).

(52)

4. But the global equity index found in the last step need to be a weighted average of countries’

equities with the weights h,

σ̄2
m = h̄′Σ̄h̄, j̄jm =

n∑
i=0

h̄ij̄si(1 + jej ), (53)
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which leads to renewed countries’ stock volatility Σ̄ and jump amplitude j̄s, that are compatible

with Equation (52).

5. For the same type of the derivative contract, the new countries’ stock imply new countries’ deriva-

tives, denoted by σ̄o, j̄o, which eventually leads to new global derivative portfolio

σ̄d = k̄′Σ̄ok̄, j̄d =

n∑
i=0

h̄ij̄oi(1 + jei),

with

k̄ =
σ̄−1o σ̄′eh̄

ι′(σ̄−1o σ̄′eh̄)
.

6. Calculate the new portfolio weights on the global equity index and global derivative portfolio using

w̄jm
w̄jd

 =

σ̄m σ̄d

j̄m j̄d


−1 θjm −

∑n
i=1 w̄

j
eiσei

(1 + jej )θ
j
n −

∑n
i=1

¯̂wjeijei

 .

7. Calculate the new hedging strategy

H̄j
i := − w̄

j
i

w̄jm
= −

¯̂wji − h̄iw̄jm − k̄iw̄
j
d

w̄jm
.

C A recap of the geometric Brownian motion model

The Black (1990) model is constructed as the following. From the perspective of the base investor, let

the equity in country i, denominated in the base currency be

dS0
i (t)

S0
i (t)

= r0 + µ0
si dt+ σsi dWi(t).

And the return on currency i for the base investor follows the dynamics

dE0
i (t)

E0
i (t)

= (r0 − ri) dt+ µ0
ei dt+ σei dBi(t).

The price of equity i quoted in currency j is therefore S0
i /E

0
j .

Define Σ as the covariance matrix among the country-specific stocks quoted in the base currency and
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exchange rates between currencies and the base currency,

Σ =



σ2
s0 σs0,s1 . . . σs0,sn σs0,e1 . . . σs0,en

σs1,s0 σ2
s1 . . . σs1,sn σs1,e1 . . . σs1,en

...
...

. . .
...

...
. . .

...

σsn,s0 σsn,s1 . . . σ2
sn σsn,e1 . . . σsn,en

σe1,s0 σe1,s1 . . . σe1,sn σ2
e1 . . . σe1,en

...
...

. . .
...

...
. . .

...

σen,s0 σen,s1 . . . σen,sn σen,e1 . . . σ2
en



,

where σa,b denotes the covariance between asset a and asset b.

One of the benefits of working with currency-hedged assets is that if denominated in a different

currency, the covariance matrix of currency-hedged assets does not change. Only expected excess returns

are dependent on the home currency. The currency-hedged expected excess return of any risky asset in

currency j is equal to the expected excess return denominated in the base currency, minus the covariance

between the equity and the exchange rate between currency j and the base currency. Define the currency-

hedged equity return as

dŜji (t)

Ŝji (t)
=

dSji (t)

Sji (t)
−
( dBji (t)

Bji (t)
− dBj(t)

Bj(t)

)
.

Suppose that the expected return vector from the perspective of the base investor is given by µ̂0, then it

holds that

µ̂j = µ̂0 −Σ[:, j],

where Σ[:, j] is the jth column of the covariance matrix. Denote the holdings of equity i by investor from

country j by wjsi . It holds that

ŵj = (ŵjs0 , . . . , ŵ
j
snŵ

j
e1 , . . . , ŵ

j
en)′ =

1

γj
Σ−1µ̂j .

As shown by Solnik (1974), an important property of asset holdings in a geometric Brownian motion

market is that every investor would hold the same equity portfolio regardless of his home currency. That

is,
wisj
wlsj

=
γl
γi
. (54)

Denote the weight on equity Si in the market equity portfolio by hi, with
∑n
i=0 hi = 1. Since every

investor is indifferent between holding the market equity and country-specific equities, we can replace the

country-specific stocks by a market equity index. Now we are in a market of Black (1990) with a market
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equity and country-specific currencies. Now use ¯̂wj to denote the vector containing the portfolio weight

on the market equity index and currencies, i.e., ¯̂wj = (ŵjm, ŵ
j
e1 , . . . , ŵ

j
en)′. Define

ω =

h′ 0

0 In

 .

The weights on the market equity index and currencies are therefore given by

¯̂wj =
1

γj
(ωΣω′)−1(ωµ̂j).

One can easily verify that

wjm = ŵjm =

n∑
i=0

ŵjsi =

n∑
i=0

wjsi .

In the absence of an equity derivative, we use the following conditions to find equilibrium

n∑
i=0

fi = 1,

n∑
i=0

ŵimfi = 1,

n∑
i=0

ŵiejfi − hj + fj = 0, ∀j = 1, . . . , n.

The equilibrium condition
∑n
i=0 ŵ

i
mfi = 1 implies that

n∑
j=0

fj

( n∑
i=0

ŵjsi

)
= 1.

According to Equation (54), we have

( n∑
l=0

γj
γl
fl

)( n∑
i=0

wjsi

)
= 1.

In the special case that every investor has the same risk preference γ, we have

n∑
i=0

wjsi = 1, ∀j. (55)

Equation (55) imposes a condition on country-specific equity returns for the existence of the equilibrium

when the risk aversion coefficients are the same across countries.

The equilibrium currency hedging, defined as the negative of the currency investment per unit invest-

ment in the market equity index, is given by

Hi
j := −

wiej
wim

= fj

(
1− wjm/γm

)
. (56)

The second equality is proved by Black (1990), where γm is the weighted average of investors’ risk attitude,
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given by

1/γm =

n∑
i=0

fi/γi.

To make it comparable to the analysis in Section 6, we assume that all investors share the same risk

aversion parameter γ. We employ the following procedure to find the market equilibrium in the model

of Black (1990):

1. Specify the the country-specific equity and currency dynamics µ,Σ, making sure that Equation

(55) is satisfied.

2. Solve the optimal portfolio weights on the country-specific equities and currencies.

3. Calculate the weight on each country’s equity in the market equity index h.

4. Calculate the joint dynamics of the asset universe. In the geometric Brownian motion case in

particular, compute the expected excess return vector and the covariance matrix, using

¯̂µj = ωµ̂j , Σ̄ = ωΣω′.

5. Compute the optimal portfolio weights ¯̂wj = 1
γ Σ̄−1 ¯̂µj .

6. Find the wealth distribution vector f such that

n∑
i=0

fi = 1,

n∑
i=0

ŵiejfi − hj + fj = 0, ∀j = 1, . . . , n. (57)

We plot the equilibrium currency hedging ratio in the model of Black (1990) as a function of the

correlation between the market equity and Currency I in a three-country world in Figure 9. Similar to

Figure 7 and 8, we start with an initial equilibrium. We keep f fixed and change the linear correlation

coefficient between the market equity and Currency I and restore the equilibrium by finding the renewed

market equity. The details of restoring the equilibrium with fixed wealth distribution f is explained

below.

1. Find an initial equilibrium with correlation coefficient ρ.

2. For a new correlation coefficient, find a constant c, such that the first entry of 1/γ(Σ)−1(c ¯̂µ0) is 1,

thereby satisfying Equation (55).
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3. Find the new market equity composition vector h, such that

f0ŵ
0
e1 + f1ŵ

1
e1 + f2ŵ

2
e1 = h1 − f1,

f0ŵ
0
e2 + f1ŵ

1
e2 + f2ŵ

2
e2 = h2 − f2.

4. Calculate the new equilibrium currency hedging ratio −w
i
ei

wim
.

D Robustness check

The safe-haven preference seen in the equilibrium currency hedging strategies of investors is free of

particular derivative contract chosen. Section 6 uses call options to complete the equity market and

presents the safe-haven preference. In this section, we use different derivative contracts and show that

investors’ preference for safe-haven currencies in equilibrium is not affected qualitatively.

Similar to the call option pricing, the put option price Pj(t) with maturity τ and strike price K is

given by

Pj(t) = KG0,1(logK)−G1,1(logK), (58)

where Ga,b(w) can be calculated according to Equation (11) in Proposition 1.

Having priced the call and put options, we also consider a straddle. Inspired by Liu, Longstaff, and

Pan (2003), we consider the following “delta-neutral” straddle:

Straddlej(t) = Cj(Sj(t), λm(t);K, τ) + Pj(Sj(t), λm(t);K, τ),

where C and P are pricing formulas for call and put options with the same strike price K and time to

expiration τ . As Liu, Longstaff, and Pan (2003) put it, the “delta-neutral” is made of call and put options

that are typically very close to the money, which can be used to intentionally avoid deep out-of-the-money

options in the quantitative examples due to liquidity issues.

Table 1 reports the equilibrium hedging ratio of Currency I and Currency II for the base investor when

different derivative contracts are used for given equity-currency excitation structure. The rows correspond

to different derivative contracts. The first row is the hedging ratios when call options are used. The

second row corresponds to put options and the third row straddles. The three main columns are hedging

ratios of Currency I and Currency II in different equity-currency excitation scenarios. In case of “Large

excitation”, Currency I and Currency II have the same risk profile, including the excitation structure with

the equity market. “Medium excitation” refers to the case where the equity-currency excitor of Currency

I is smaller than that in the “Large excitation” scenario, while the excitation structure involving Currency
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II remains unchanged from the “Large excitation” scenario. The equity-currency excitor of Currency II

is smallest in the “Small excitation” case. Across all three scenarios, the excitation structure between

the equity and Currency II does not vary. Also invariant are the expected jump intensities of the equity

jump component, Currency I jump component and Currency II jump component.

The hedging ratio of Currency I is always the largest in case of “Large excitation” and smallest in case

of “Small excitation”, regardless of which derivative contracts are used. The investor has a preference

for the safe-haven currency, in the sense that the more immune the currency is to the equity turmoil, the

less currency risk the investor hedges away in equilibrium. This conclusion is robust with regard to the

derivative contracts that are used to complete the equity market.

Large excitation Medium excitation Small excitation

Currency I Currency II Currency I Currency II Currency I Currency II

call 0.937 0.937 0.928 0.938 0.920 0.940

put 0.936 0.936 0.927 0.937 0.918 0.939

straddle 0.927 0.927 0.917 0.929 0.907 0.931

Table 1: This table reports the equilibrium hedging ratio of Currency I and Currency II for the base investor

when different derivative contracts are used for given equity-currency excitation structures. The rows correspond

to different derivative contracts: call options in the first row; put options in the second and straddles in the third.

“Large”, “medium” and “small” excitation refer to the different scenario of equity-currency excitor of Currency I.

The equity-currency excitor of Currency I is the largest in “Large excitation”, and smallest in “Small excitation”.

The equity-currency excitation structure of Currency II is the same as that of Currency I in the “Large excitation”

scenario and remains the same through all scenarios. The expected jump intensities of the equity jump component,

Currency I jump component and Currency II jump component are kept constant in all scenarios. The excitation

matrix is set to be β = (15, 6, 6; 6, 8, 0; 6, 0, 8) in case of “Large excitation”, β = (15, 6, 6; 4, 11.8, 0; 6, 0, 8) in

case of “Medium excitation”, and β = (15, 6, 6; 2, 15, 0; 6, 0, 8) in case of “Small excitation”. The expected jump

intensities are intentionally kept constant with E[λm] = 1.28, E[λ1] = E[λ2] = 0.67 in all three scenarios.
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Ranaldo, A. and P. Söderlind (2010). Safe haven currencies. Review of Finance, 385–407.

Sercu, P. (1980). A generalization of the international asset pricing model. Revue de lAssociation

Française de Finance 1 (1), 91–135.

Solnik, B. H. (1974). An equilibrium model of the international capital market. Journal of Economic

Theory 8 (4), 500–524.

Stulz, R. (1981). A model of international asset pricing. Journal of Financial Economics 9 (4), 383–406.

Torres, J. M. (2012). International portfolio choice, exchange rate and systemic risks. EconoQuan-

tum 6 (1), 81–89.

Wang, J. (1996). The term structure of interest rates in a pure exchange economy with heterogeneous

investors. Journal of Financial Economics 41 (1), 75–110.

57


